The GPCRDB is a molecular class-specific information system that collects, combines, validates and disseminates heterogeneous data on G protein-coupled receptors (GPCRs). The database stores data on sequences, ligand binding constants and mutations. The system also provides computationally derived data such as sequence alignments, homology models, and a series of query and visualization tools. The GPCRDB is updated automatically once every 4-5 months and is freely accessible at http://www.gpcr.org/7tm/. 相似文献
The overlapping distribution of opioid and cholecystokinin (CCK) peptides and their receptors (μ and δ opioid receptors; CCK-A
and CCK-B receptors) in the central nervous system have led to a large number of studies aimed at clarifying the functional
relationships between these two neuropeptides. Most of the pharmacological studies devoted to the role of CCK and enkephalins
have been focused on the control of pain. Recently the existence of regulatory mechanisms between both systems have been proposed,
and the physiological antagonism between CCK and endogenous opioid systems has been definitely demonstrated by coadministration
of CCK-B selective antagonists with RB 101, a systemically active inhibitor, which fully protects enkephalins from their degradation.
Several studies have also been done to investigate the functional relationships between both systems in development of opioid
side-effects and in behavioral responses. This article will review the experimental pharmacology of association of enkephalin-degrading
enzyme inhibitors and CCK-B antagonists to demonstrate the interest of these molecules in the management of both pain and
opioid addiction.
Special issue dedicated to Dr. Eric J. Simon. 相似文献
Among HLA-DP specificities, HLA-DP4 specificity involves at least two molecules, HLA-DPA1*0103/DPB1*0401 (DP401) and HLA-DPA1*0103/DPB1*0402 (DP402), which differ from each other by only three residues. Together, they are present worldwide at an allelic frequency of 20-60% and are the most abundant human HLA II alleles. Strikingly, the peptide-binding specificities of these molecules have never been investigated. Hence, in this study, we report the peptide-binding motifs of both molecules. We first set up a binding assay specific for the immunopurified HLA-DP4 molecules. Using multiple sets of synthetic peptides, we successfully defined the amino acid preferences of the anchor residues. With these assays, we were also able to identify new peptide ligands from allergens and viral and tumor Ags. DP401 and DP402 exhibit very similar patterns of recognition in agreement with molecular modeling of the complexes. Pockets P1 and P6 accommodate the main anchor residues and interestingly contain only two polymorphic residues, beta86 and beta11, respectively. Both positions are almost dimorphic and thus produce a limited number of pocket combinations. Taken together, our results support the existence of three main binding supertypes among HLA-DP molecules and should significantly contribute to the identification of universal epitopes to be used in peptide-based vaccines for cancer, as well as for allergic or infectious diseases. 相似文献
Dendritic cells (DCs) are essential components of the early events of HIV infection. Here, we characterized the trafficking pathways that HIV-1 follows during its capture by DCs and its subsequent presentation to CD4(+) T cells via an infectious synapse. Immunofluorescence microscopy indicates that the virus-containing compartment in mature DCs (mDCs) co-labels for the tetraspanins CD81, CD82, and CD9 but contains little CD63 or LAMP-1. Using ratio imaging of pH-reporting fluorescent virions in live DCs, we show that HIV-1 is internalized in an intracellular endocytic compartment with a pH of 6.2. Significantly, we demonstrate that the infectivity of cell-free virus is more stable at mildly acidic pH than at neutral pH. Using electron microscopy, we confirm that HIV-1 accumulates in intracellular vacuoles that contain CD81 positive internal membranes but overlaps only partially with CD63. When allowed to contact T cells, HIV-1-loaded DCs redistribute CD81, and CD9, as well as internalized HIV-1, but not the immunological synapse markers MHC-II and T-cell receptor to the infectious synapse. Together, our results indicate that HIV-1 is internalized into a non-conventional, non-lysosomal, endocytic compartment in mDCs and further suggest that HIV-1 is able to selectively subvert components of the intracellular trafficking machinery required for formation of the DC-T-cell immunological synapse to facilitate its own cell-to-cell transfer and propagation. 相似文献
The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which expressed either no or a weak concentration of GRK2, respectively. High expression of GRK2 in neurons is likely to be the reason for this difference because overexpression of GRK2 in COS-7 and HEK293 cells reproduced rapid and profound uncoupling of 5-HT4R. We have also shown, for the first time, that GRK2 requirements for uncoupling and endocytosis were very different. Indeed, beta-arrestin/dynamin-dependent endocytosis was observed in HEK293 cells without any need of GRK2 overexpression. In addition to this difference, uncoupling and beta-arrestin/dynamin-dependent endocytosis were mediated through distinct mechanisms. Neither uncoupling nor beta-arrestin/dynamin-dependent endocytosis required the serine and threonine residues localized within the specific C-terminal domains of the 5-HT4R splice variants. In contrast, a cluster of serines and threonines, common to all variants, was an absolute requirement for beta-arrestin/dynamin-dependent receptor endocytosis, but not for receptor uncoupling. Furthermore, beta-arrestin/dynamin-dependent endocytosis and uncoupling were dependent on and independent of GRK2 kinase activity, respectively. These results clearly demonstrate that the uncoupling and endocytosis of 5-HT4R require different GRK2 concentrations and involve distinct molecular events. 相似文献
Non-invasive micro-ultrasound was evaluated as a method to quantify intrauterine growth phenotypes in mice. Improved methods are required to accelerate research using genetically-altered mice to investigate the interactive roles of genes and environments on embryonic and placental growth. We determined (1) feasible age ranges for measuring specific variables, (2) normative growth curves, (3) accuracy of ultrasound measurements in comparison with light microscopy, and (4) weight prediction equations using regression analysis for CD-1 mice and evaluated their accuracy when applied to other mouse strains.
Methods
We used 30–40 MHz ultrasound to quantify embryonic and placental morphometry in isoflurane-anesthetized pregnant CD-1 mice from embryonic day 7.5 (E7.5) to E18.5 (full-term), and for C57Bl/6J, B6CBAF1, and hIGFBP1 pregnant transgenic mice at E17.5.
Results
Gestational sac dimension provided the earliest measure of conceptus size. Sac dimension derived using regression analysis increased from 0.84 mm at E7.5 to 6.44 mm at E11.5 when it was discontinued. The earliest measurement of embryo size was crown-rump length (CRL) which increased from 1.88 mm at E8.5 to 16.22 mm at E16.5 after which it exceeded the field of view. From E10.5 to E18.5 (full term), progressive increases were observed in embryonic biparietal diameter (BPD) (0.79 mm to 7.55 mm at E18.5), abdominal circumference (AC) (4.91 mm to 26.56 mm), and eye lens diameter (0.20 mm to 0.93 mm). Ossified femur length was measureable from E15.5 (1.06 mm) and increased linearly to 2.23 mm at E18.5. In contrast, placental diameter (PD) and placental thickness (PT) increased from E10.5 to E14.5 then remained constant to term in accord with placental weight. Ultrasound and light microscopy measurements agreed with no significant bias and a discrepancy of less than 25%. Regression equations predicting gestational age from individual variables, and embryonic weight (BW) from CRL, BPD, and AC were obtained. The prediction equation BW = -0.757 + 0.0453 (CRL) + 0.0334 (AC) derived from CD-1 data predicted embryonic weights at E17.5 in three other strains of mice with a mean discrepancy of less than 16%.
Conclusion
Micro-ultrasound provides a feasible tool for in vivo morphometric quantification of embryonic and placental growth parameters in mice and for estimation of embryonic gestational age and/or body weight in utero. 相似文献
Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals.
Results
In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome.
Conclusions
Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.
Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses. 相似文献