首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2589篇
  免费   206篇
  国内免费   1篇
  2796篇
  2022年   26篇
  2021年   45篇
  2020年   24篇
  2019年   34篇
  2018年   42篇
  2017年   33篇
  2016年   62篇
  2015年   151篇
  2014年   120篇
  2013年   215篇
  2012年   211篇
  2011年   215篇
  2010年   117篇
  2009年   116篇
  2008年   146篇
  2007年   197篇
  2006年   158篇
  2005年   134篇
  2004年   126篇
  2003年   122篇
  2002年   112篇
  2001年   19篇
  2000年   9篇
  1999年   27篇
  1998年   32篇
  1997年   24篇
  1996年   22篇
  1995年   16篇
  1994年   24篇
  1993年   18篇
  1992年   8篇
  1991年   12篇
  1990年   9篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1974年   6篇
  1973年   9篇
  1972年   4篇
  1971年   5篇
  1969年   4篇
排序方式: 共有2796条查询结果,搜索用时 15 毫秒
101.
NOD1 is a cytosolic signalling host pattern-recognition receptor composed of a caspase-activating and recruitment domain (CARD), a nucleotide-binding and oligomerization domain (NOD) and leucine-rich repeats. It plays a crucial role in innate immunity by activating the NF-kappaB pathway via its downstream effector the kinase RICK (RIP2) following the recognition of a specific bacterial ligand. RICK is recruited by NOD1 through interaction of their respective CARDs. Here we present the high resolution NMR structure of the NOD1 CARD. It is generally similar to other CARDs of known structure, consisting of six tightly packed helices, although the length and orientation of the last helix is unusual. Mutations in both the NOD1 and RICK CARD domains were assayed by immuno-precipitation of cell lysates and in vivo NF-kappaB activation in order to define residues important for CARD-CARD interaction and downstream signalling. The results show that the interaction is critically dependent on three acidic residues on NOD1 CARD and three basic residues on RICK CARD and thus is likely to have a strong electrostatic component, similar to other characterised CARD-CARD interactions.  相似文献   
102.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   
103.
The brown algal genus Padina (Dictyotales, Phaeophyceae) is distributed worldwide in tropical and temperate seas. Global species diversity and distribution ranges, however, remain largely unknown. Species‐level diversity was reassessed using DNA‐based, algorithmic species delineation techniques based on cox3 and rbcL sequence data from 221 specimens collected worldwide. This resulted in estimates ranging from 39 to 61 putative species (ESUs), depending on the technique as well as the locus. We discuss the merits, potential pitfalls, and evolutionary and biogeographic significance of algorithmic species delineation. We unveil patterns whereby ESUs are in all but one case restricted to either the Atlantic or Indo‐Pacific Ocean. Within ocean basins we find evidence for the vast majority of ESUs to be confined to a single marine realm. Exceptions, whereby ESUs span up to three realms, are located in the Indo‐Pacific Ocean. Patterns of range‐restricted species likely arise by repeated founder events and subsequent peripatric speciation, hypothesized to dominate speciation mechanisms for coastal marine organisms in the Indo‐Pacific. Using a three‐gene (cox3, psaA and rbcL), relaxed molecular clock phylogenetic analysis we estimated divergence times, providing a historical framework to interpret biogeographic patterns.  相似文献   
104.
105.
During influenza virus infection, viral ribonucleoproteins (vRNPs) are replicated in the nucleus and must be exported to the cytoplasm before assembling into mature viral particles. Nuclear export is mediated by the cellular protein Crm1 and putatively by the viral protein NEP/NS2. Proteolytic cleavage of NEP defines an N-terminal domain which mediates RanGTP-dependent binding to Crm1 and a C-terminal domain which binds to the viral matrix protein M1. The 2.6 A crystal structure of the C-terminal domain reveals an amphipathic helical hairpin which dimerizes as a four-helix bundle. The NEP-M1 interaction involves two critical epitopes: an exposed tryptophan (Trp78) surrounded by a cluster of glutamate residues on NEP, and the basic nuclear localization signal (NLS) of M1. Implications for vRNP export are discussed.  相似文献   
106.
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. α5β1 and αvβ3 integrins form stable complexes with immobilized endostatin (KD = ∼1.8 × 10−8 m, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the αvβ3 integrin at the interface between the β-propeller domain of the αv subunit and the βA domain of the β3 subunit. In addition, we report that α5β1 and αvβ3 integrins bind to heparin/heparan sulfate. The ectodomain of the α5β1 integrin binds to haparin with high affinity (KD = 15.5 nm). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and α5β1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.Endostatin is an endogenous inhibitor of angiogenesis that inhibits proliferation and migration of endothelial cells (13). This C-fragment of collagen XVIII has also been shown to inhibit 65 different tumor types and appears to down-regulate pathological angiogenesis without side effects (2). Endostatin regulates angiogenesis by complex mechanisms. It modulates embryonic vascular development by enhancing proliferation, migration, and apoptosis (4). It also has a biphasic effect on the inhibition of endothelial cell migration in vitro, and endostatin therapy reveals a U-shaped curve for antitumor activity (5, 6). Short term exposure of endothelial cells to endostatin may be proangiogenic, unlike long term exposure, which is anti-angiogenic (7). The effect of endostatin depends on its concentration and on the type of endothelial cells (8). It exerts the opposite effects on human umbilical vein endothelial cells and on endothelial cells derived from differentiated embryonic stem cells. Furthermore, two different mechanisms (heparin-dependent and heparin-independent) may exist for the anti-proliferative activity of endostatin depending on the growth factor used to induce cell proliferation (fibroblast growth factor 2 or vascular endothelial growth factor). Its anti-proliferative effect on endothelial cells stimulated by fibroblast growth factor 2 is mediated by the binding of endostatin to heparan sulfate (9), whereas endostatin inhibits vascular endothelial growth factor-induced angiogenesis independently of its ability to bind heparin and heparan sulfate (9, 10). The broad range of molecular targets of endostatin suggests that multiple signaling systems are involved in mediating its anti-angiogenic action (11), and although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanisms of action are not as fully elucidated as they are for other endogenous angiogenesis inhibitors (11).Endostatin binds with relatively low affinity to several membrane proteins including α5β1 and αvβ3 integrins (12), heparan sulfate proteoglycans (glypican-1 and -4) (13), and KDR/Flk1/vascular endothelial growth factor receptor 2 (14), but no high affinity receptor(s) has been identified so far. The identification of molecular interactions established by endostatin at the cell surface is a first step toward the understanding of the mechanisms by which endostatin regulates angiogenesis. We have previously characterized the binding of endostatin to heparan sulfate chains (9). In the present study we have focused on characterizing the interactions between endostatin, α5β1, αvβ3, and αvβ5 integrins and heparan sulfate. Although interactions between several integrins and endostatin have been studied previously in solid phase assays (12) and in cell models (12, 15, 16), no molecular data are available on the binding site of endostatin to the integrins. We found that two arginine residues of endostatin (Arg27 and Arg139) participate in binding to integrins and to heparan sulfate, suggesting that endostatin is not able to bind simultaneously to these molecules displayed at the cell surface. Furthermore, we have demonstrated that α5β1, αvβ3, and αvβ5 integrins bind to heparan sulfate. This may explain why both heparan sulfate and α5β1 integrins are required for the localization of endostatin in lipid rafts, in support of the model proposed by Wickström et al. (15).  相似文献   
107.
108.
The Notch signaling pathway controls several cell fate decisions during lymphocyte development, from T-cell lineage commitment to the peripheral differentiation of B and T lymphocytes. Deltex-1 is a RING finger ubiquitin ligase which is conserved from Drosophila to humans and has been proposed to be a regulator of Notch signaling. Its pattern of lymphoid expression as well as gain-of-function experiments suggest that Deltex-1 regulates both B-cell lineage and splenic marginal-zone B-cell commitment. Deltex-1 was also found to be highly expressed in germinal-center B cells. To investigate the physiological function of Deltex-1, we generated a mouse strain lacking the Deltex-1 RING finger domain, which is essential for its ubiquitin ligase activity. Deltex-1(Delta/Delta) mice were viable and fertile. A detailed histological analysis did not reveal any defects in major organs. T- and B-cell development was normal, as were humoral responses against T-dependent and T-independent antigens. These data indicate that the Deltex-1 ubiquitin ligase activity is dispensable for mouse development and immune function. Possible compensatory mechanisms, in particular those from a fourth Deltex gene identified during the course of this study, are also discussed.  相似文献   
109.
The prevalence of obesity has steadily increased over the last few decades. During this time, populations of industrialized countries have been exposed to diets rich in fat with a high content of linoleic acid and a low content of α-linolenic acid compared with recommended intake. To assess the contribution of dietary fatty acids, male and female mice fed a high-fat diet (35% energy as fat, linoleic acid:α-linolenic acid ratio of 28) were mated randomly and maintained after breeding on the same diet for successive generations. Offspring showed, over four generations, a gradual enhancement in fat mass due to combined hyperplasia and hypertrophy with no change in food intake. Transgenerational alterations in adipokine levels were accompanied by hyperinsulinemia. Gene expression analyses of the stromal vascular fraction of adipose tissue, over generations, revealed discrete and steady changes in certain important players, such as CSF3 and Nocturnin. Thus, under conditions of genome stability and with no change in the regimen over four generations, we show that a Western-like fat diet induces a gradual fat mass enhancement, in accordance with the increasing prevalence of obesity observed in humans.  相似文献   
110.
Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping sortase in L. lactis IL1403.The GRAS (generally recognized as safe) status of lactic acid bacteria (LAB) has catalyzed a myriad of promising applications using these bacteria as a vehicle for in situ delivery of bioactive proteins such as antigens or digestive enzymes in the gastrointestinal tract of the human host (4, 26). In the context of therapeutic applications of LAB, a major fundamental goal is to determine whether they can be engineered to deliver bioactive proteins to the right bacterial and host locations. We previously designed a protein-targeting system in LAB that addressed proteins to the desired bacterial site (i.e., cytoplasm, cell wall, or external medium), as validated using a model protein reporter and various antigens (14, 15). Studies investigating the use of LAB as vaccine delivery vehicles suggested that the cell-wall-anchored protein form may possess superior ability to induce a strong immune response (3, 14). Among the various surface display systems described in Gram-positive bacteria (13), a dedicated surface protein anchoring system catalyzed by sortases was first described and characterized in Staphylococcus aureus (29). It covalently anchors proteins via their C-terminal cell wall anchor (CWA) domain to the bacterial peptidoglycan. SrtA-like sortases process proteins bearing an LPXTG C-terminal motif and are considered to be the housekeeping sortase that anchors most proteins harboring a sorting signal (32). Other sortases were subsequently shown to anchor proteins bearing the same or other motifs (11, 16).Surprisingly, while the roles of sortases and LPXTG proteins are well documented in pathogens, few reports have examined these functions in other bacteria. A report suggests a relationship between sortase activity and adhesion of the LAB Lactobacillus salivarius, although direct involvement of sortase was not demonstrated (47). Recently, sortase activity was correlated to assembly of pili and adhesion properties in Lactobacillus rhamnosus (21). To further characterize sortase in LAB, we chose an industrially important member of this bacterial group, Lactococcus lactis, to study sortase A functionality in anchoring its putative substrates on the cell wall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号