首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有160条查询结果,搜索用时 62 毫秒
101.
Herpes simplex virus type 1 (HSV-1) is a human pathogen of the alphaherpesvirus family which infects and spreads in the nervous system. Glycoproteins play a key role in the process of assembly and maturation of herpesviruses, which is essential for neuroinvasion and transneuronal spread. Glycoprotein B (gB) is a main component of the HSV-1 envelope and is necessary for the production of infectious particles. The cytoplasmic domain of gB, the longest one among HSV-1 glycoproteins, contains several highly conserved peptide sequences homologous to motifs involved in intracellular sorting. To determine the specific roles of these motifs in processing, subcellular localization, and the capacity of HSV-1 gB to complement a gB-null virus, we generated truncated or point mutated forms of a green fluorescent protein (GFP)-tagged gB. GFP-gB with a deletion in the acidic cluster DGDADEDDL (amino acids [aa] 896 to 904) behaved the same as the parental form. Deletion or disruption of the YTQV motif (aa 889 to 892) abolished internalization and reduced complementation by 60%. Disruption of the LL motif (aa 871 to 872) impaired the return of the protein to the trans-Golgi network (TGN) while enhancing its recycling to the plasma membrane. Truncations from residue E 857 abolished transport and processing of the truncated proteins, which had null complementation activity, through the Golgi complex. Altogether, our results favor a model in which HSV-1 gets its final envelope in the TGN, and they suggest that endocytosis, albeit not necessary, might play a role in infectivity.  相似文献   
102.
103.
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic stage of T. brucei expresses a soluble NADH-dependent fumarate reductase (FRDg) in the peroxisome-like organelles called glycosomes. This enzyme is responsible for the production of about 70% of the excreted succinate, the major end product of glucose metabolism in this form of the parasite. Here we functionally characterize a new gene encoding FRD (FRDm1) expressed in the procyclic stage. FRDm1 is a mitochondrial protein, as evidenced by immunolocalization, fractionation of digitonin-permeabilized cells, and expression of EGFP-tagged FRDm1 in the parasite. RNA interference was used to deplete FRDm1, FRDg, or both together. The analysis of the resulting mutant cell lines showed that FRDm1 is responsible for 30% of the cellular NADH-FRD activity, which solves a long standing debate regarding the existence of a mitochondrial FRD in trypanosomatids. FRDg and FRDm1 together account for the total NADH-FRD activity in procyclics, because no activity was measured in the double mutant lacking expression of both proteins. Analysis of the end products of 13C-enriched glucose excreted by these mutant cell lines showed that FRDm1 contributes to the production of between 14 and 44% of the succinate excreted by the wild type cells. In addition, depletion of one or both FRD enzymes results in up to 2-fold reduction of the rate of glucose consumption. We propose that FRDm1 is involved in the maintenance of the redox balance in the mitochondrion, as proposed for the ancestral soluble FRD presumably present in primitive anaerobic cells.  相似文献   
104.

Background  

Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2). When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant.  相似文献   
105.
In all trypanosomatids, including Trypanosoma brucei, glycolysis takes place in peroxisome-like organelles called glycosomes. These are closed compartments wherein the energy and redox (NAD(+)/NADH) balances need to be maintained. We have characterized a T. brucei gene called FRDg encoding a protein 35% identical to Saccharomyces cerevisiae fumarate reductases. Microsequencing of FRDg purified from glycosome preparations, immunofluorescence, and Western blot analyses clearly identified this enzyme as a glycosomal protein that is only expressed in the procyclic form of T. brucei but is present in all the other trypanosomatids studied, i.e. Trypanosoma congolense, Crithidia fasciculata and Leishmania amazonensis. The specific inactivation of FRDg gene expression by RNA interference showed that FRDg is responsible for the NADH-dependent fumarate reductase activity detected in glycosomal fractions and that at least 60% of the succinate secreted by the T. brucei procyclic form (in the presence of d-glucose as the sole carbon source) is produced in the glycosome by FRDg. We conclude that FRDg plays a key role in the energy metabolism by participating in the maintenance of the glycosomal NAD(+)/NADH balance. We have also detected a significant pyruvate kinase activity in the cytosol of the T. brucei procyclic cells that was not observed previously. Consequently, we propose a revised model of glucose metabolism in procyclic trypanosomes that may also be valid for all other trypanosomatids except the T. brucei bloodstream form. Interestingly, H. Gest has hypothesized previously (Gest, H. (1980) FEMS Microbiol. Lett. 7, 73-77) that a soluble NADH-dependent fumarate reductase has been present in primitive organisms and evolved into the present day fumarate reductases, which are quinol-dependent. FRDg may have the characteristics of such an ancestral enzyme and is the only NADH-dependent fumarate reductase characterized to date.  相似文献   
106.
The source-sink ratio of 1-year-old, potted sour cherry trees ( Prunus cerasus L.) was altered by whold-plant partial defoliation or continuous illumination to determine if trees were primarily sink limited and to elucidate the means whereby photosynthetic enhancement or inhibition occurs. Leaf xylem water potential was not affected by either treatment. Although stomatal conductance was reduced by 1 to 3 days of continuous illumination, internal CO2 concentration was not significantly affected indicating that the enhanced physical limitation imposed by the stomata was of no physiological significance. Net CO2 assimilation (A) was significantly higher 4 days after partial defoliation and lower from 1 to 4 days following continuious illumination. The increase in A in partially defoliated plants was associated with reduced leaf starch and increased surose and sorbitol concentrations. The decrease in A in continuously illuminated plants was associated with a decrease in variable fluorescence, photochemical efficiency of photosystem II (PSII) and an increase in instantaneous fluorescence, indicating that leaves were photoinhibited and that irreversible damage had occurred to PSII. In addition, leaves of continuously illuminated plants had 80% more starch and significantly less sucrose and sorbitol. These altered leaf carbohydrate concentrations indicate that the existing sink limitation may have been aggravated by continuous illumination leading to an insufficient utilization of sucrose from the leaf. Whether the altered photochemical and biochemical events occurred simultaneously and/or to the same degree to lead to the observed responses remains equivocal.  相似文献   
107.
Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress.  相似文献   
108.
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions.  相似文献   
109.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   
110.
The rate of increase and doubling time of the HOB clone of Autographa californica nuclear polyhedrosis virus (AcMNPV-HOB) in neonate Trichoplusia ni larvae was determined by measuring the increase in viral DNA through time following inoculation with average doses of 50 or 17,400 occlusion bodies per larva. Changes in total DNA and viral DNA through time were followed by fluorescence spectroscopy and quantitative slot-blot DNA:DNA hybridization, respectively. Total DNA content (i.e., larval DNA and viral DNA) of larvae infected with the intermediate dose lagged behind that of noninfected larvae 30 hr post-inoculation (p.i), reached a maximum at 51 hr p.i., and stayed constant thereafter. The total DNA content of larvae inoculated with the high dose lagged behind that of the control group from 18 hr p.i. and increased slowly until death of the larvae (ca. 48 hr p.i.). The amount of viral DNA in larvae inoculated with the intermediate dose increased exponentially between 15 and 42 hr p.i., reached a maximum at 48 hr p.i., and stayed constant until 68 hr p.i., by which time most larvae had died. The amount of viral DNA in larvae inoculated with the high dose did not increase exponentially; initially the rate of increase was the same as that for larvae inoculated with the intermediate dose but became progressively lower after 13 hr p.i. Calculations of the rate of increase for AcMNPV-HOB in neonate T. ni larvae inoculated with the intermediate dose and incubated at 29 degrees C resulted in a value of 0.264 hr-1 (doubling time: 2.63 hr).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号