首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   46篇
  2022年   9篇
  2021年   14篇
  2020年   13篇
  2019年   8篇
  2018年   11篇
  2017年   12篇
  2016年   17篇
  2015年   39篇
  2014年   37篇
  2013年   44篇
  2012年   53篇
  2011年   37篇
  2010年   28篇
  2009年   33篇
  2008年   34篇
  2007年   42篇
  2006年   26篇
  2005年   24篇
  2004年   13篇
  2003年   22篇
  2002年   15篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   4篇
  1982年   7篇
  1981年   4篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   9篇
  1971年   5篇
  1969年   3篇
  1968年   5篇
  1966年   4篇
  1965年   4篇
  1962年   3篇
排序方式: 共有748条查询结果,搜索用时 15 毫秒
101.
Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells   总被引:3,自引:0,他引:3  
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural differentiation. Here we report an increase in the expression of the autophagy genes Atg7, Becn1, Ambra1 and LC3 in vivo in the mouse embryonic olfactory bulb (OB) during the initial period of neuronal differentiation at E15.5, along with a parallel increase in neuronal markers. In addition, we observed an increase in LC3 lipidation and autophagic flux during neuronal differentiation in cultured OB-derived stem/progenitor cells. Pharmacological inhibition of autophagy with 3-MA or wortmannin markedly decreased neurogenesis. These observations were supported by similar findings in two autophagy-deficient genetic models. In Ambra1 loss-of-function homozygous mice (gt/gt) the expression of several neural markers was decreased in the OB at E13.5 in vivo. In vitro, Ambra1 haploinsufficient cells developed as small neurospheres with an impaired capacity for neuronal generation. The addition of methylpyruvate during stem/progenitor cell differentiation in culture largely reversed the inhibition of neurogenesis induced by either 3-MA or Ambra1 haploinsufficiency, suggesting that neural stem/progenitor cells activate autophagy to fulfill their high energy demands. Further supporting the role of autophagy for neuronal differentiation Atg5-null OB cells differentiating in culture displayed decreased TuJ1 levels and lower number of cells with neurites. These results reveal new roles for autophagy-related molecules Atg5 and Ambra1 during early neuronal differentiation of stem/progenitor cells.  相似文献   
102.
Chromium(VI) is genotoxic when tested in vitro or injected parenterally in such a way to escape detoxification mechanisms. However, its genotoxicity and potential carcinogenicity are lost, depending on dose and administration route, due to efficient reduction in body fluids and nontarget cells. Chromium(VI) is a Group 1 IARC carcinogen, but only in the respiratory tract and in well-defined occupational settings that involved heavy exposures. Recently, concern has been expressed that oral chromium(VI) may be a gastric carcinogen. We demonstrated that administration of very high doses of chromium(VI) with the drinking water does not induce any clastogenic effect in hematopoietic cells of adult mice and their fetuses. Thereafter, we investigated whether administration of chromium(VI) with the drinking water may induce local genotoxic effects in the gastrointestinal tract. Sodium dichromate dihydrate was administered to mice for 9 consecutive months, at doses corresponding to 5 and 20 mg chromium(VI)/l, which exceed drinking water standards by 100 and 400 times, respectively. Under these conditions, chromium(VI) failed to enhance the frequency of DNA-protein crosslinks and did not cause oxidative DNA damage, measured in terms of 8-oxo-2'-deoxyguanosine, in the forestomach, glandular stomach and duodenum. When cells from the same organs were isolated and challenged in vitro with chromium(VI), as positive controls, the same genotoxicity biomarkers were evidently affected. Thus, consistently with the knowledge accumulated in 50 years of research on chromium(VI) kinetics and metabolism, oral chromium(VI) appears to be devoid of genotoxicity in the gastrointestinal tract. After 9 months, we did not observe any variation of tumor yield in skin, lung, forestomach, glandular stomach, and duodenum of chromium(VI)-treated mice. These results are discussed in the light of literature data, also including a recent 2-year carcinogenicity study performed by the National Toxicology Program.  相似文献   
103.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an intracellular second messenger releasing Ca2+ from intracellular stores in different cell types. In addition, it is also active in triggering [Ca2+](i) increase when applied extracellularly and various underlying mechanisms have been proposed. Here, we used hP2Y(11)-transfected 1321N1 astrocytoma cells to unequivocally establish whether extracellular NAADP+ is an agonist of the P2Y(11) receptor, as previously reported for beta-NAD+ [I. Moreschi, S. Bruzzone, R.A. Nicholas, et al., Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes, J. Biol. Chem. 281 (2006) 31419-31429]. Extracellular NAADP+ triggered a concentration-dependent two-step elevation of [Ca2+](i) in 1321N1-hP2Y(11) cells, but not in wild-type 1321N1 cells, secondary to the intracellular production of IP(3), cAMP and cyclic ADP-ribose (cADPR). Specifically, the transient [Ca2+](i) rise proved to be related to IP(3) overproduction and to consequent Ca2+ mobilization, while the sustained [Ca2+](i) elevation was caused by the cAMP/ADP-ribosyl cyclase (ADPRC)/cADPR signalling cascade and by influx of extracellular Ca2+. In human granulocytes, endogenous P2Y(11) proved to be responsible for the NAADP+-induced cell activation (as demonstrated by the use of NF157, a selective and potent inhibitor of P2Y(11)), unveiling a role of NAADP+ as a pro-inflammatory cytokine. In conclusion, we provide unequivocal evidence for the activation of a member of the P2Y receptor subfamily by NAADP+.  相似文献   
104.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   
105.
Arispe N  Diaz JC  Flora M 《Biophysical journal》2008,95(10):4879-4889
The opening of the Alzheimer's Aβ channel permits the flux of calcium into the cell, thus critically disturbing intracellular ion homeostasis. Peptide segments that include the characteristic histidine (His) diad, His13 and His14, efficiently block the Aβ channel activity, blocking Aβ cytotoxicity. We hypothesize that the vicinal His-His peptides coordinate with the rings of His in the mouth of the pore, thus blocking the flow of calcium ions through the channel, with consequent blocking of Aβ cytotoxicity. To test this hypothesis, we studied Aβ ion channel activity and cytotoxicity after the addition of compounds that are known to have His association capacity, such as Ni2+, imidazole, His, and a series of His-related compounds. All compounds were effective at blocking both Aβ channel and preventing Aβ cytotoxicity. The efficiency of protection of His-related compounds was correlated with the number of imidazole side chains in the blocker compounds. These data reinforce the premise that His residues within the Aβ channel sequence are in the pathway of ion flow. Additionally, the data confirm the contribution of the Aβ channel to the cytotoxicity of exogenous Aβ.  相似文献   
106.
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text]  相似文献   
107.
108.
109.
Specimens of the seawater fish annular seabream (Diplodus annularis) were caught from a polluted harbor area and from a clean reference area. Seawater concentrates and fish-muscle extracts were not mutagenic in the Salmonella reversion test. Liver preparations of fish from the 2 sources were comparatively assayed for microsomal mixed-function oxidases and cytosolic biochemical parameters, as well as for the ability of S12 fractions to activate promutagens or to detoxify direct-acting mutagens. A shift of the cytochrome P-450 peak from 450.3 to 448.5 was accompanied by a 4.5-fold increase in arylhydrocarbon hydroxylase activity in fish living in the polluted environment. At the same time, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were doubled in the cytosol of the same animals, while reduced glutathione (GSH) peroxidase and GSH S-transferase were slightly yet significantly depressed. No significant difference was recorded for other biochemical parameters, including GSH, oxidized glutathione (GSSG) reductase, NADH- and NADPH-dependent diaphorases, and DT diaphorase. In parallel, fish exposed to polluted seawater exhibited a significant and marked enhancement of the metabolic activation of the pyrolysis product Trp-P-2 and of benzo[a]pyrene-trans-7,8-diol, and at the same time were less efficient in detoxifying the antitumor compound ICR 191. Liver S12 fractions from both sources efficiently decreased the direct mutagenicity of sodium dichromate, and failed to activate benzo[a]pyrene and aflatoxin B1 to mutagenic metabolites. These results provide evidence that both biochemical parameters and the overall capacity of fish liver to activate or detoxify certain mutagens can be assumed to be sensitive indicators of exposure to mixed organic pollutants in the marine environment.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号