首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   14篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   5篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1954年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
81.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   
82.
Multiunit or single unit activity recorded simultaneously from frontal cortex (FC) and locus coeruleus (LC) under ketamine anesthesia revealed that both regions show slow oscillatory activity, together or separately. If, however, both regions are engaged in this oscillatory activity, there is a systematic relationship between their phases with peak LC firing always following FC firing by 200–400 ms. This was confirmed by cross-correlational analyses, which indicated that the two structures temporarily form a resonant system. The FC-LC resonant state is, however, loose enough to remain open to other intrinsic or extrinsic influences, keeping the measured frequencies of oscillations at each site slightly different, as demonstrated by a delailed analysis of the autocorrelograms. An injection of lidocaine at the frontal cortex site, while sharply reducing the prefrontal activity to essentially zero, leads to an increase of the LC activity and to a modification of the shape of the LC autocorrelogram, but does not change appreciably the phase relationship between the activity in the two structures during the diminishing activity in FC.  相似文献   
83.
84.
The tissue and developmental specificities of the three Drosophila isoactins, originally identified in primary myogenic cultures and in the permanent Schneider L-2 cell line, have been investigated. Of these three isoactins (I, II, and III), actins I and II are stable and actin III is unstable. Two-dimensional polyacrylamide gel electrophoretic analyses of total cellular extracts after 1-h [(35)S]methionine pulses were performed on a large variety of embryonic, larval, and adult muscle and nonmuscle tissues. The results suggest that isoactins II and III are generalized cellular actins found in all drosophila cell types. Actin I, on the other hand, is muscle-associated and is found exclusively in supercontractile muscle (such as larval body wall and larval and adult viscera) including primary myogenic cell cultures. Although actin I synthesis is not detectable during very early embryogenesis, it is detectable by 25 h and actin I is a major stable actin in all larval muscle tissues. Actin I is synthesized in reduced amounts relative to the other actins in late third instar larvae but is again a major product of actin synthesis in the adult abdomen. A stable actin species with the same pI as actin III has been identified in the adult thorax and appears to be unique to flight muscle tissue. This new stable form of thoracic actin may be the result of a stabilization of the actin III found in other tissues or may be an entirely separate gene product.  相似文献   
85.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action in vivo and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
86.
Cilia and flagella are rare in nongerminal tissues of anthropods, and are generally thought to be restricted to sperm and sensory cells in insects (2). Whitten (5) has reported the presence of kinetosomes at the base of mitotrichia in the dipteran fly Sarcophaga bullata, but reports no evidence of the organization of fibrous elements characteristic of cilia and or flagella. During an ultrastructural analysis of morphogenesis of the colleterial gland of the silk moth Hyalophora cecropia, we found the first example of paired flagella associated with an insect secretory cell. These structures are also unusual in that they serve a temporary role in morphogenesis and subsequently disappear at the terminal stages of differentiation.  相似文献   
87.
Polyphosphate degradation and phosphate secretion were optimized in Escherichia coli strains overexpressing the E. coli polyphosphate kinase gene (ppk) and either the E. coli polyphosphatase gene (ppx) or the Saccharomyces cerevisiae polyphosphatase gene (scPPX1) from different inducible promoters on medium- and high-copy plasmids. The use of a host strain without functional ppk or ppx genes on the chromosome yielded the highest levels of polyphosphate, as well as the fastest degradation of polyphosphate when the gene for polyphosphatase was induced. The introduction of a hybrid metabolic pathway consisting of the E. coli ppk gene and the S. cerevisiae polyphosphatase gene resulted in lower polyphosphate concentrations than when using both the ppk and ppx genes from E. coli, and did not significantly improve the degradation rate. It was also found that the rate of polyphosphate degradation was highest when ppx was induced late in growth, most likely due to the high intracellular polyphosphate concentration. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells; excess phosphate was secreted into the medium, leading to a down-regulation of the phosphate-starvation (Pho) response. The production of alkaline phosphatase, an indicator of the Pho response, can be precisely controlled by manipulating the degree of ppx induction. Copyright 1998 John Wiley & Sons, Inc.  相似文献   
88.
The self-incompatible (SI) Brassica napus line W1, which carries the 910 S allele, was transformed with an inactive copy of the 910 S locus receptor kinase (SRK) gene. Two transformed lines were analyzed based on their heritable ability to set self-seed. The first line was virtually completely self-compatible (SC), and reciprocal pollinations with the original W1 line demonstrated that only the stigma side of the SI phenotype was altered. An analysis of the expression of endogenous SRK-910 demonstrated that the mechanism of transgene action is via gene suppression. Furthermore, the expression of the S locus glycoprotein gene present in the 910 allele (SLG-910), SLG-A10, which is derived from a nonfunctional S allele, and an S locus-related gene were also suppressed. When the transgene was crossed into another SI line carrying the A14 S allele, it was also capable of suppressing the expression of the endogenous genes and of making this line SC. The second transgenic line studied was only partly SC. In this case as well, only the stigma phenotype was affected, although no gene suppression was detected for endogenous SRK-910 or SLG-910. In this line, the expression of the transgene most likely was causing the change in phenotype, and no effect was observed when this transgene was crossed into the other SI line. Therefore, this work reinforces the hypothesis that the SRK gene is required, but only for the stigma side of the SI phenotype, and that a single transgene can alter the SI phenotype of more than one S allele.  相似文献   
89.
Retinal degeneration slow (Rds) is a photoreceptor-specific tetraspanin glycoprotein essential for photoreceptor outer segment (OS) morphogenesis. Over 80 mutations in this protein are associated with several different retinal diseases. Rds forms a mixture of disulfide-linked homomeric dimers, octamers, and higher-order oligomers, with Cys150 playing a crucial role in its oligomerization. Rds also forms noncovalent homo- and hetero-tetramers with its nonglycosylated homologue, Rom-1. Here, we evaluated the subcellular site of Rds oligomerization and the pattern of Rds/Rom-1 complex assembly in several types of knockout mice, including rhodopsin (Rho-/-, lacking rod OS), Rom-1 (Rom-1-/-), neural retina leucine zipper (Nrl-/-, cone-dominant), and in comparison with wild-type (WT, rod-dominant) mice. Oligomerization and the pattern of complex assembly were also evaluated in OS-enriched vs OS-depleted preparations from WT and Rom-1-/- retinas. Velocity sedimentation under reducing- and nonreducing conditions and co-immunoprecipitation experiments showed the presence of Rds mainly as homo- and hetero-tetramers with Rom-1 in the photoreceptor inner segment (IS), while higher-order, disulfide-linked intermediate complexes and oligomers were exclusively present in the photoreceptor OS. Rom-1-independent oligomerization of Rds was observed in Rom-1-/- retinas. The pattern of Rds complexes in cones from Nrl-/- mice was comparable to that in rods from WT mice. On the basis of these findings, we propose that Rds traffics from the IS to the OS as homo- and hetero-tetramers, with subsequent disulfide-linked oligomerization occurring concomitant with OS disc morphogenesis (at either the base of OS or the tip of the connecting cilium). These results suggest that Rds mutations that interfere with tetramer formation can block Rds trafficking to the OS, leading to loss-of-function defects.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号