首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   12篇
  230篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   21篇
  2014年   14篇
  2013年   12篇
  2012年   10篇
  2011年   17篇
  2010年   9篇
  2009年   9篇
  2008年   15篇
  2007年   13篇
  2006年   12篇
  2005年   16篇
  2004年   14篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1945年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
71.
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.  相似文献   
72.
Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the α1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the α1 chains of collagen type I.  相似文献   
73.
An experimentally derived prediction tool is under development which aims to assess potential deactivation of diquat caused by water and deposits on plant leaf surfaces in New Zealand water bodies, where aquatic weeds are targeted for diquat treatment. Optimising the use and success of diquat is important not only in managing public confidence in the use of aquatic herbicides, but also in minimising financial risk from failed treatments. Our approach focuses on characterising lake water quality and plant condition factors in these lakes to identify parameters that might be useful indicators of diquat deactivation potential. Water samples have been collected at 3-month intervals from lakes receiving large scale treatment for weed control. Samples have been analysed for turbidity, suspended solids, chlorophyll a, conductivity and dissolved anions. Samples have also been spiked with 1 mg l−1 diquat to measure loss from adsorption and/or absorption. Shoot samples were also collected from targeted weed species at each sampling site and the amount of organic and inorganic deposits on plants has been measured and then added to a second diquat spiked sample to assess potential additional diquat loss from these deposits. Our results have shown deactivation from deposits on plant surfaces which is highly correlated with turbidity, including inorganic suspended solids and total suspended solids. A plant “dirtiness” scale has been devised to help predict the likely success or risk of diquat failure prior to any decision to proceed with treatment. Deactivation in water was only weakly linked to total suspended solids. Our failure to find significant correlation with the water quality factors measured may reflect the need for more detailed analysis of the particle size and composition of suspended solids and future research will address these issues.  相似文献   
74.

Background

Data integration is a crucial task in the biomedical domain and integrating data sources is one approach to integrating data. Data elements (DEs) in particular play an important role in data integration. We combine schema- and instance-based approaches to mapping DEs to terminological resources in order to facilitate data sources integration.

Methods

We extracted DEs from eleven disparate biomedical sources. We compared these DEs to concepts and/or terms in biomedical controlled vocabularies and to reference DEs. We also exploited DE values to disambiguate underspecified DEs and to identify additional mappings.

Results

82.5% of the 474 DEs studied are mapped to entries of a terminological resource and 74.7% of the whole set can be associated with reference DEs. Only 6.6% of the DEs had values that could be semantically typed.

Conclusion

Our study suggests that the integration of biomedical sources can be achieved automatically with limited precision and largely facilitated by mapping DEs to terminological resources.
  相似文献   
75.
ApoE Receptor 2 (ApoER2) and the very low density lipoprotein receptor (VLDLR) are type I transmembrane proteins belonging to the LDLR family of receptors. They are neuronal proteins found in synaptic compartments that play an important role in neuronal migration during development. ApoER2 and VLDLR bind to extracellular glycoproteins, such as Reelin and F-spondin, which leads to phosphorylation of adaptor proteins and subsequent activation of downstream signaling pathways. It is thought that ApoER2 and VLDLR undergo clustering upon binding to their ligands, but no direct evidence of clustering has been shown. Here we show strong clustering of ApoER2 induced by the dimeric ligands Fc-RAP, F-spondin, and Reelin but relatively weak clustering with the ligand apoE in the absence of lipoproteins. This clustering involves numerous proteins besides ApoER2, including amyloid precursor protein and the synaptic adaptor protein PSD-95. Interestingly, we did not observe strong clustering of ApoER2 with VLDLR. Clustering was modulated by both extracellular and intracellular domains of ApoER2. Together, our data demonstrate that several multivalent ligands for ApoER2 induce clustering in transfected cells and primary neurons and that these complexes included other synaptic molecules, such as APP and PSD-95.  相似文献   
76.
The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world.  相似文献   
77.
A Ponten  C Sick  M Weeber  O Haller    G Kochs 《Journal of virology》1997,71(4):2591-2599
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.  相似文献   
78.
Molecular pathways underlying the neurotoxicity and production of amyloid β protein (Aβ) represent potentially promising therapeutic targets for Alzheimer''s disease (AD). We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice while promoting cofilin activation and mitochondrial dysfunction. Translocation of cofilin to mitochondria and induction of cofilin–actin pathology require the activation/dephosphorylation of cofilin by Slingshot homolog 1 (SSH1) and cysteine oxidation of cofilin. In this study, we found that endogenous RanBP9 positively regulates SSH1 levels and mediates Aβ-induced translocation of cofilin to mitochondria and induction of cofilin–actin pathology in cultured cells, primary neurons, and in vivo. Endogenous level of RanBP9 was also required for Aβ-induced collapse of growth cones in immature neurons (days in vitro 9 (DIV9)) and depletion of synaptic proteins in mature neurons (DIV21). In vivo, amyloid precursor protein (APP)/presenilin-1 (PS1) mice exhibited 3.5-fold increased RanBP9 levels, and RanBP9 reduction protected against cofilin–actin pathology, synaptic damage, gliosis, and Aβ accumulation associated with APP/PS1 mice. Brains slices derived from APP/PS1 mice showed significantly impaired long-term potentiation (LTP), and RanBP9 reduction significantly enhanced paired pulse facilitation and LTP, as well as partially rescued contextual memory deficits associated with APP/PS1 mice. Therefore, these results underscore the critical importance of endogenous RanBP9 not only in Aβ accumulation but also in mediating the neurotoxic actions of Aβ at the level of synaptic plasticity, mitochondria, and cofilin–actin pathology via control of the SSH1-cofilin pathway in vivo.The defining pathological hallmark of Alzheimer''s disease (AD) is the accumulation of amyloid β protein (Aβ) in brain associated with tau pathology, synapse loss, cytoskeletal aberrations, mitochondrial dysfunction, and cognitive decline. The generation of Aβ occurs via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) by beta site APP cleaving enzyme 1 (BACE1) and the presenilin (PS) complex, respectively.1 Soluble oligomeric forms of Aβ are thought to be the most toxic species, resulting in synaptic loss and downstream neurotoxicity.2 Despite the requirement for Tau in multiple aspects of Aβ-induced neurotoxicity,3 a large knowledge gap exists as to how the Aβ oligomer-induced neurotoxic signals are transduced intracellularly to impair synaptic plasticity, eventually leading to neurodegeneration. Both Aβ and Tau promote cofilin–actin pathology,4, 5 cofilin–actin pathology is widespread in AD brains,6 and cofilin activity is also increased in AD brains.7 Cofilin normally functions as a key regulator of actin dynamics that destabilizes filamentous actin (F-actin). Cofilin is inactivated by phosphorylation on Ser3 by LIM kinase 1 (LIMK1), whereas its dephosphorylation by Slingshot homolog 1 (SSH1) activates cofilin.4 Upon oxidative stress and/or Ca2+ elevation,4, 8, 9 SSH1 is activated and active cofilin becomes oxidized on cysteine residues, resulting in rapid mitochondrial translocation to promote apoptosis and induction of cofilin–actin pathology.10, 11 An early and consistent impairment secondary to Aβ oligomer treatment in primary neurons is the shrinkage of dendritic spines12 involving the rearrangement of F-actin cytoskeleton in spines and loss of spine-associated proteins such as postsynaptic density-95 (PSD95) and Drebrin,13, 14 as well as impaired mitochondrial function.15, 16We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice.17, 18 Moreover, RanBP9 is significantly increased in brains of AD patients and the J20 APP transgenic model.18, 19 In studying the trafficking of APP, we also found that RanBP9 overexpression not only promotes the endocytosis of APP but also those of LRP and β1-integrin, the latter resulting in disassembly of integrin-associated focal complexes (talin and vinculin).20 In addition, RanBP9 overexpression promotes cofilin activation and the translocation of cofilin to mitochondria, resulting in overall mitochondrial dysfunction.9, 19 However, how RanBP9 activates cofilin is unknown, and it is not clear whether reduction in endogenous RanBP9 protects against Aβ oligomer-induced deficits in synaptic plasticity, cofilin-dependent pathology, Aβ accumulation, and memory impairment. Here we report that short interfering ribonucleic acid (siRNA) or genetic reduction in RanBP9 significantly reduces SSH1 levels and mitigates Aβ-induced translocation of cofilin to mitochondria, cofilin–actin rod/aggregate formation, depletion of synaptic proteins, deficits in synaptic plasticity, Aβ accumulation, and contextual memory deficits in vivo.  相似文献   
79.
Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially more durable type of resistance. Identification of S genes is hampered by their recessive nature. Here we explore the use of pathogen-derived effectors as molecular probes to identify S genes. Effectors manipulate specific host processes thereby contributing to disease. Effector targets might therefore represent S genes. Indeed, the Pseudomonas syringae effector HopZ2 was found to target MLO2, an Arabidopsis thaliana homologue of the barley S gene Mlo. Unfortunately, most effector targets identified so far are not applicable as S genes due to detrimental effects they have on other traits. However, some effector targets such as Mlo are successfully used, and with the increase in numbers of effector targets being identified, the numbers of S genes that can be used in resistance breeding will rise as well.  相似文献   
80.
Translation initiation of hepatitis C virus (HCV) occurs through an internal ribosome entry site (IRES) located at its 5'-end. As a positive-stranded RNA virus, HCV uses its genome as a common template for translation and replication, but the coordination between these two processes remains poorly characterized. Moreover, although genetic evidence of RNA-protein interactions for viral replication is accumulating because of subgenomic replicons and a recent culture system for HCV, such interactions are still contentious in the regulation of translation. To gain insight into such mechanisms, we addressed the involvement of cis and trans viral factors in HCV IRES activity by using a cell-based RNA reporter system. We found that the HCV 3' noncoding region (NCR) strongly stimulates IRES efficiency in cis, depending on the genotype and the cell line. Moreover, we confirmed the role of the core protein in viral gene expression as previously reported in vitro. Surprisingly, we observed a similar effect, i.e. a twofold increase under low amounts of NS5B RNA polymerase, followed by a decrease at higher concentrations. However, no contribution of NS5A to HCV IRES-mediated translation was noted and no cooperative effect could be detected between 3' NCR and viral proteins or between proteins. Collectively, these results suggest that HCV RNA translation is regulated, and that the switch from translation to replication might involve a sequential requirement for both cis and trans viral factors, because of their apparent lack of synergy, probably with the aid of host factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号