首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   7篇
  2022年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  1993年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有51条查询结果,搜索用时 0 毫秒
51.
Low-frequency collective motions in proteins are generally very important for their biological functions. To study such motions, harmonic dynamics proved most useful since it is a straightforward method; it consists of the diagonalization of the Hessian matrix of the potential energy, yielding the vibrational spectrum and the directions of internal motions. Unfortunately, the diagonalization of this matrix requires a large computer memory, which is a limiting factor when the protein contains several thousand atoms. To circumvent this limitation we have developed three methods that enable us to diagonalize large matrices using much less computer memory than the usual harmonic dynamics. The first method is approximate; it consists of diagonalizing small blocks of the Hessian matrix, followed by the coupling of the low-frequency modes obtained for each block. It yields the low-frequency vibrational spectrum with a maximum error of 20%. The second method consists, after diagonalizing small blocks, of coupling the high- and low-frequency modes using an iterative procedure. It yields the exact low-frequency normal modes, but requires a long computational time with convergence problems. The third method, DIMB (Diagonalization in a Mixed Basis), which has the best performance, consists of coupling the approximate low-frequency modes with the mass-weighted cartesian coordinates, also using an iterative procedure. It reduces significantly the required computer memory and converges rapidly. The eigenvalues and eigenvectors obtained by this method are without significant error in the chosen frequency range. Moreover, it is a general method applicable to any problem of diagonalization of a large matrix. We report the application of these methods to a deca-alanine helix, trypsin inhibitor, a neurotoxin, and lysozyme. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号