首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1066篇
  免费   78篇
  国内免费   1篇
  2023年   9篇
  2022年   11篇
  2021年   24篇
  2020年   22篇
  2019年   18篇
  2018年   34篇
  2017年   26篇
  2016年   29篇
  2015年   68篇
  2014年   57篇
  2013年   79篇
  2012年   96篇
  2011年   89篇
  2010年   64篇
  2009年   46篇
  2008年   70篇
  2007年   68篇
  2006年   49篇
  2005年   44篇
  2004年   40篇
  2003年   40篇
  2002年   26篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1996年   12篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有1145条查询结果,搜索用时 46 毫秒
61.
62.
PCR-based screening of microdeletions in the azoospermic factor (AZF) on the Yq chromosome is an accepted means of identifying a common genetic cause of male infertility, responsible for 5-15% of cases associated with a low sperm count (相似文献   
63.
To investigate the molecular interactions of synaptophysin I and vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin II during exocytosis, we have used time-lapse videomicroscopy to measure fluorescence resonance energy transfer in live neurons. For this purpose, fluorescent protein variants fused to synaptophysin I or VAMP2 were expressed in rat hippocampal neurons. We show that synaptophysin I and VAMP2 form both homo- and hetero-oligomers on the synaptic vesicle membrane. When exocytosis is stimulated with alpha-latrotoxin, VAMP2 dissociates from synaptophysin I even in the absence of appreciable exocytosis, whereas synaptophysin I oligomers disassemble only upon incorporation of the vesicle with the plasma membrane. We propose that synaptophysin I has multiple roles in neurotransmitter release, regulating VAMP2 availability for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and possibly participating in the late steps of exocytosis.  相似文献   
64.
Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals.  相似文献   
65.
Corticotropin-releasing hormone (Crh) plays an important role in modulating physiological and behavioral responses to stress. Its actions are mediated through two receptors, Crhr1 and Crhr2. Urocortin (Ucn), a Crh-related neuropeptide and the postulated endogenous ligand for Crhr2, is a potential mediator of stress responses. We generated Ucn-deficient mice using embryonic stem cell technology to determine its role in stress-induced behavioral and autonomic responses. Unlike Crhr1- or Crhr2-deficient mice, Ucn-deficient mice exhibit normal anxiety-like behavior as well as autonomic regulation in response to stress. However, the mutant mice display an impaired acoustic startle response that is not due to an obvious hearing defect. Thus, our results suggest that Ucn does not play an essential role in stress-induced behavioral and autonomic responses. Ucn may modulate the acoustic startle response through the Ucn-expressing neuron projections from the region of the Edinger-Westphal nucleus.  相似文献   
66.
The ability to degrade organic solid wastes by the fungus Saccobolus saccoboloides was studied. The organism, unusual in such studies, was cultivated in synthetic liquid media with agitation, and on day 8 of growth the mycelium was passed to flasks with trimming. On day 16 of growth, the trimming degradation was assesed by carboxymethylcellulase, xylanase, and amylase activities evaluation, and NaOH 1% hydrolysis. Later on, the type of waste was modified (trimming, filter paper, newspaper, cardboard, sawdust and wood shaving were used) as well as the mass (300-1800 mg/flask). In these cases the enzymatic activities increased between 300 and 600 mg/flask. The total separation of the cellular components in all types of paper and cardboard was observed, together with a high loss of weight. S. saccoboloides was not able to degrade the wood wastes  相似文献   
67.
Fomes sclerodermeus produces manganese peroxidase (MnP) and laccase as part of its ligninolytic system. A Doehlert experimental design was applied in order to find the optimum conditions for MnP and laccase production. The factors studied were Cu2+, Mn2+ and asparagine. The present model and data analysis allowed us not only to define optimal media for production of both laccase and MnP, but also to show the combined effects between the factors. MnP was strongly influenced by Mn2+, which acts as an inducer. Under these conditions Cu2+ negatively affected MnP activity. At 13 days of growth 0.75 U ml–1 were produced in the optimized culture medium supplemented with 1 mM MnSO4 and 4 g l–1 asparagine. The laccase titer under optimized conditions reached maximum values at 16 days of growth: 13.5 U ml–1 in the presence of 0.2 mM CuSO4, 0.4 mM MnSO4 and 6 g l–1 asparagine. Mn2+ promoted production of both enzymes. There were important interactions among the nutrients evaluated, the most significant being those between Cu2+ and asparagine.  相似文献   
68.
Caloric restriction (CR), which has been demonstrated to offset the age-associated accrual of oxidative injury, involves a reduction in calory intake while maintaining adequate nutrition, preserves the activities of antioxidant enzymes in postmitotic tissues, maintains organ function, opposes the development of spontaneous diseases, and prolongs maximum life span in laboratory rodents. It has been proposed that reductions in Reactive Oxygen Species (ROS) production and cellular oxidative injury are central to the positive effects of CR. In the present investigation we studied the effect of CR and of a vitamin E deprived diet on mitochondrial structure and features in the liver of rats during aging, in order to ascertain the extent of modifications induced by these experimental conditions. CR rats displayed structural and functional mitochondrial properties (fatty acid pattern, respiratory chain activities, antioxidant levels, and hydroperoxide contents) similar to those of younger rats whilst vitamin E deficient rats appeared older than their own age. The mitochondria of the former, together with those of young rats, possessed the lowest Coenzyme Q9, hydroperoxide, and cytochrome contents as well as a suitable fatty acid membrane composition. Our study confirms that CR is a valuable tool in limiting aging-related free-radical damage also at mitochondrial liver level.  相似文献   
69.
70.
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号