首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   71篇
  国内免费   1篇
  2024年   2篇
  2023年   11篇
  2022年   10篇
  2021年   25篇
  2020年   20篇
  2019年   17篇
  2018年   34篇
  2017年   25篇
  2016年   28篇
  2015年   67篇
  2014年   56篇
  2013年   77篇
  2012年   92篇
  2011年   79篇
  2010年   68篇
  2009年   46篇
  2008年   67篇
  2007年   64篇
  2006年   44篇
  2005年   40篇
  2004年   36篇
  2003年   37篇
  2002年   20篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有1048条查询结果,搜索用时 31 毫秒
71.
Protein expression changes induced in thioglycolate‐elicited peritoneal murine macrophages (MΦ) by infection with type III Group B Streptococcus (GBS) are described. Proteins from control MΦ and MΦ incubated 2 h with live or heat‐inactivated GBS were separated by 2‐DE. Proteins whose expression was significantly different in infected MΦ, as compared with control cells, were identified by MS/MS analysis. Changes in the expression level of proteins involved in both positive and negative modulation of phagocytic functions, stress response and cell death were induced in MΦ by GBS infection. In particular, expression of enzymes playing a key role in production of reactive oxygen species was lowered in GBS‐infected MΦ. Significant alterations in the expression of some metabolic enzymes were also observed, most of the glycolytic and of the pentose‐cycle enzymes being down‐regulated in MΦ infected with live GBS. Finally, evidence was obtained that GBS infection affects the expression of enzymes or enzyme subunits involved in ATP synthesis and in adenine nucleotides interconversion processes.  相似文献   
72.
Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients.Human African trypanosomiasis (HAT), or sleeping sickness, is caused by an extracellular protozoan parasite of the genus Trypanosoma, which is transmitted through the bite of a tsetse fly (genus Glossina). Two morphologically identical subspecies of the parasite, are responsible for the two geographically and clinically different forms of HAT: a chronic form, widespread in West and Central Africa, caused by T. b. gambiense, and an acute form, endemic in eastern Africa, caused by T. b. rhodesiense (1). In both forms of the disease, parasites are initially localized in the blood stream, lymph, and peripheral tissues; this is the first or hemolymphatic stage (S1). During this stage, patients present generic clinical features that are common to other infectious diseases such as human immunodeficiency virus (HIV), malaria, and tuberculosis (TB), which can coexist with HAT, thus making its early diagnosis difficult (2). If treatment is not carried out, the disease progresses to the second or meningoencephalitic stage (S2) after trypanosomes cross the blood-brain barrier (BBB) and invade the central nervous system (CNS). This phase is characterized by a broad range of neurological signs that are indicative of CNS involvement (1). Diagnosis of HAT is based on parasitological demonstration of parasites in blood or lymph-node aspirate (3). All positive or suspect patients have to undergo a lumbar puncture and cerebrospinal fluid (CSF)1 examination, to determine whether they have second stage disease (4). According to the World Health Organization (WHO) guidelines, the meningoencephalitic stage is defined by the presence of parasites in CSF and/or a white blood cell (WBC) count of more than 5 cells per μl (5). Other parameters, such as intrathecal IgM production could also provide additional information to determine whether the CNS is involved (6, 7).Treatment of HAT patients varies depending on the infecting parasite and the stage of disease (5, 8). S2 drugs in current use, including melarsoprol, eflornithine, and a combination of nifurtimox and eflornithine have several limitations, such as a high rate of toxicity (melarsoprol causes death to 5% of treated patients) (9), complex logistics, and mode of administration (6, 10). Consequently, staging is a vital step in the diagnosis and treatment of HAT. However, the poor specificity or sensitivity of WBC counting and of parasitological techniques for demonstration of parasites in CSF, highlight the need for discovery of better tools for staging the disease.Several attempts have been made during the last decade to identify potential biomarkers able to discriminate between the two stages of sleeping sickness. Most of the efforts focused on cytokines and chemokines, because the patient''s immune system plays a crucial role in the brain pathology (1114).Proteomic approaches are increasingly being applied in biomedical research and clinical medicine to investigate body fluids as a source of biomarkers (15), including the diagnosis of neurological disorders such as Alzheimer''s disease (16), Parkinson''s disease (17), and multiple sclerosis (18, 19). The protein composition of CSF is strictly regulated and can reflect the physiological or pathological state of the CNS (15). Thus in the present study, we addressed the challenge of staging HAT by analyzing CSF from T. b. gambiense patients using two complementary proteomic strategies: a classical approach based on two-dimensional gel electrophoresis (2-DE), and quantitative mass spectrometry (MS) using isobaric tandem mass tag (TMT) technology (sixplex TMT® MS/MS) (20).  相似文献   
73.
Stable isotope labeling by amino acids in cell culture (SILAC) provides a straightforward tool for quantitation in proteomics. However, one problem associated with SILAC is the in vivo conversion of labeled arginine to other amino acids, typically proline. We found that arginine conversion in the fission yeast Schizosaccharomyces pombe occurred at extremely high levels, such that labeling cells with heavy arginine led to undesired incorporation of label into essentially all of the proline pool as well as a substantial portion of glutamate, glutamine, and lysine pools. We found that this can be prevented by deleting genes involved in arginine catabolism using methods that are highly robust yet simple to implement. Deletion of both fission yeast arginase genes or of the single ornithine transaminase gene, together with a small modification to growth medium that improves arginine uptake in mutant strains, was sufficient to abolish essentially all arginine conversion. We demonstrated the usefulness of our approach in a large scale quantitative analysis of proteins before and after cell division; both up- and down-regulated proteins, including a novel protein involved in septation, were successfully identified. This strategy for addressing the “arginine conversion problem” may be more broadly applicable to organisms amenable to genetic manipulation.Stable isotope labeling by amino acids in cell culture (SILAC)1 (1) is one of the key methods for large scale quantitative proteomics (2, 3). In SILAC experiments, proteins are metabolically labeled by culturing cells in media containing either normal (“light”) or heavy isotope-labeled amino acids, typically lysine and arginine. Peptides derived from the light and heavy cells are thus distinguishable by mass spectrometry and can be mixed for accurate quantitation. SILAC is also possible at the whole-organism level (4).An inherent problem in SILAC is the metabolic conversion of labeled arginine to other amino acids, as this complicates quantitative analysis of peptides containing these amino acids. Arginine conversion to proline is well described in mammalian cells, although the extent of conversion varies among cell types (5). When conversion is observed, typically 10–25% of the total proline pool is found to contain label (611). Arginine conversion has also been reported in SILAC experiments with budding yeast Saccharomyces cerevisiae (3, 12, 13).Because more than 50% of tryptic peptides in large data sets contain proline (7), it is not practical simply to disregard proline-containing peptides during quantitation. Several methods have been proposed to either reduce arginine conversion or correct for its effects on quantitation. In some cell types, arginine conversion can be prevented by lowering the concentration of exogenous arginine (6, 1416) or by adding exogenous proline (9). However, these methods can involve significant changes to growth media and may need to be tested for each experimental condition used. Given the importance of arginine in many metabolic pathways, careful empirical titration of exogenous arginine concentration is required to minimize negative effects on cell growth (14). In addition, low arginine medium can lead to incomplete arginine labeling, although the reasons for this are not entirely clear (7). An alternative strategy is to omit labeled arginine altogether (3, 13, 17), but this reduces the number of quantifiable peptides. Correction methods include using two different forms of labeled arginine (7) or computationally compensating for proline-containing peptides (11, 12, 18). Ultimately, none of these methods address the problem at its root, the utilization of arginine in cellular metabolism.To develop a differential proteomics work flow for the fission yeast Schizosaccharomyces pombe, we sought to adapt SILAC for use in this organism, a widely used model eukaryote with excellent classical and reverse genetics. Here we describe extremely high conversion of labeled arginine to other amino acids in fission yeast as well as a novel general solution to the problem that should be applicable to other organisms. As proof of principle, we quantitated changes in protein levels before and after cell division on a proteome-wide scale. We identified both up- and down-regulated proteins, including a novel protein involved in septation.  相似文献   
74.
Recent evidence points to a strong relationship between increased mitochondrial biogenesis and increased survival in eukaryotes. Branched-chain amino acids (BCAAs) have been shown to extend chronological life span in yeast. However, the role of these amino acids in mitochondrial biogenesis and longevity in mammals is unknown. Here, we show that a BCAA-enriched mixture (BCAAem) increased the average life span of mice. BCAAem supplementation increased mitochondrial biogenesis and sirtuin 1 expression in primary cardiac and skeletal myocytes and in cardiac and skeletal muscle, but not in adipose tissue and liver of middle-aged mice, and this was accompanied by enhanced physical endurance. Moreover, the reactive oxygen species (ROS) defense system genes were upregulated, and ROS production was reduced by BCAAem supplementation. All of the BCAAem-mediated effects were strongly attenuated in endothelial nitric oxide synthase null mutant mice. These data reveal an important antiaging role of BCAAs mediated by mitochondrial biogenesis in mammals.  相似文献   
75.
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts.  相似文献   
76.
77.
78.
A definitive role for chromogranin A (CGA)-derived fragments in the control of the gastrointestinal smooth muscle contractility has not been yet established. The purpose of the present study was to evaluate, in vitro, the effects of the recombinant vasostatin 1-78 (VS-1), CGA 7-57 and CGA 47-66 on the mouse gastric mechanical activity, recording the changes of intraluminal pressure. VS-1, CGA 7-57 and CGA 47-66 produced concentration-dependent relaxations. Mouse anti-vasostatin-1 monoclonal antibody 5A8, recognising the region 53-57, abolished the relaxation induced by VS-1, indicating the specificity of the effect. The relaxation was significantly reduced by tetrodotoxin (TTX), blocker of neuronal voltage-dependent Na(+) channels, l-NAME, inhibitor of nitric oxide (NO) synthase, or apamin, blocker of small conductance Ca(2+)-dependent K(+) channels. The joint application of TTX and l-NAME did not show any additive effects, whereas TTX plus apamin abolished the VS-1 response. The results suggest that the N-terminal CGA-derived peptides are able to relax mouse gastric muscle and, therefore, they point out an inhibitory role of vasostatin I in the gastrointestinal tract. The relaxation is mediated in part by neural mechanisms through NO production and in part by non-neural mechanisms involving the opening of small conductance Ca(2+)-dependent K(+) channels.  相似文献   
79.
In a long-term experiment bean (Phaseolus vulgaris L.) seedlings were grown for 18 days in hydroponics in either phosphate-sufficient (+P) or phosphate-deficient (-P) nutrient solutions. Phosphate deprivation halved the phosphorous content of roots. In plasma membrane (PM) fractions isolated from -P roots the phospholipid (PL) level was reduced from 35 to 21 mol%, while PL composition and degree of unsaturation were hardly altered. Digalactosyldiacylglycerol (DGDG) accumulated up to 26% of total PM lipids, replacing PL to a large extent. Molecular species and fatty acid compositions of DGDG in root PM were different compared to DGDG present in the -P plastids. In a short-term study, bean seedlings were grown for 18 days in hydroponics with a complete nutrient solution containing phosphate and then incubated in a -P medium for increasing time ranging from 1 up to 96 h. At the end of the starvation period phosphorous content of -P roots was reduced by 30% compared to +P ones. An activation of phospholipase D and phospholipase C was observed after 1 and 2h of phosphate deprivation, respectively. Maximal phosphatidic acid accumulation was detected after 4h of phosphate deprivation, when also DGDG started to accumulate in PM of bean roots. The fatty acid composition of PLD-derived phosphatidylbutanol resembled that of phosphatidylcholine.  相似文献   
80.
The subfamily of POXA3 laccase isoenzymes produced by the fungus Pleurotus ostreatus has been characterized as an example of the complexity and heterogeneity of fungal isoenzyme patterns. Two isoenzymes, POXA3a and POXA3b, were previously purified, exhibiting an unusual heterodimeric structure composed of a large (67 kDa) and a small (18 or 16 kDa) subunit. A unique gene encodes the large subunit of both POXA3a and POXA3b, but alternative splicing produces two variants—differing for an insertion of four amino acids—for each isoenzyme. Two genes encoding POXA3a and POXA3b small subunits have been identified, and the corresponding amino acid sequences show only two amino acid substitutions. The 18- and 16-kDa subunits of both POXA3a and POXA3b differ for N-glycosylation at Asn150 of the 16-kDa subunit. The POXA3 large subunit 3D model allows us to highlight peculiarities of this molecule with respect to the laccases whose 3D structures are known.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号