首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   38篇
  832篇
  2024年   3篇
  2023年   6篇
  2022年   9篇
  2021年   21篇
  2020年   16篇
  2019年   13篇
  2018年   29篇
  2017年   22篇
  2016年   24篇
  2015年   52篇
  2014年   48篇
  2013年   57篇
  2012年   74篇
  2011年   62篇
  2010年   54篇
  2009年   40篇
  2008年   55篇
  2007年   52篇
  2006年   36篇
  2005年   29篇
  2004年   24篇
  2003年   27篇
  2002年   13篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   10篇
  1997年   3篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有832条查询结果,搜索用时 15 毫秒
141.
Stable isotope labeling by amino acids in cell culture (SILAC) provides a straightforward tool for quantitation in proteomics. However, one problem associated with SILAC is the in vivo conversion of labeled arginine to other amino acids, typically proline. We found that arginine conversion in the fission yeast Schizosaccharomyces pombe occurred at extremely high levels, such that labeling cells with heavy arginine led to undesired incorporation of label into essentially all of the proline pool as well as a substantial portion of glutamate, glutamine, and lysine pools. We found that this can be prevented by deleting genes involved in arginine catabolism using methods that are highly robust yet simple to implement. Deletion of both fission yeast arginase genes or of the single ornithine transaminase gene, together with a small modification to growth medium that improves arginine uptake in mutant strains, was sufficient to abolish essentially all arginine conversion. We demonstrated the usefulness of our approach in a large scale quantitative analysis of proteins before and after cell division; both up- and down-regulated proteins, including a novel protein involved in septation, were successfully identified. This strategy for addressing the “arginine conversion problem” may be more broadly applicable to organisms amenable to genetic manipulation.Stable isotope labeling by amino acids in cell culture (SILAC)1 (1) is one of the key methods for large scale quantitative proteomics (2, 3). In SILAC experiments, proteins are metabolically labeled by culturing cells in media containing either normal (“light”) or heavy isotope-labeled amino acids, typically lysine and arginine. Peptides derived from the light and heavy cells are thus distinguishable by mass spectrometry and can be mixed for accurate quantitation. SILAC is also possible at the whole-organism level (4).An inherent problem in SILAC is the metabolic conversion of labeled arginine to other amino acids, as this complicates quantitative analysis of peptides containing these amino acids. Arginine conversion to proline is well described in mammalian cells, although the extent of conversion varies among cell types (5). When conversion is observed, typically 10–25% of the total proline pool is found to contain label (611). Arginine conversion has also been reported in SILAC experiments with budding yeast Saccharomyces cerevisiae (3, 12, 13).Because more than 50% of tryptic peptides in large data sets contain proline (7), it is not practical simply to disregard proline-containing peptides during quantitation. Several methods have been proposed to either reduce arginine conversion or correct for its effects on quantitation. In some cell types, arginine conversion can be prevented by lowering the concentration of exogenous arginine (6, 1416) or by adding exogenous proline (9). However, these methods can involve significant changes to growth media and may need to be tested for each experimental condition used. Given the importance of arginine in many metabolic pathways, careful empirical titration of exogenous arginine concentration is required to minimize negative effects on cell growth (14). In addition, low arginine medium can lead to incomplete arginine labeling, although the reasons for this are not entirely clear (7). An alternative strategy is to omit labeled arginine altogether (3, 13, 17), but this reduces the number of quantifiable peptides. Correction methods include using two different forms of labeled arginine (7) or computationally compensating for proline-containing peptides (11, 12, 18). Ultimately, none of these methods address the problem at its root, the utilization of arginine in cellular metabolism.To develop a differential proteomics work flow for the fission yeast Schizosaccharomyces pombe, we sought to adapt SILAC for use in this organism, a widely used model eukaryote with excellent classical and reverse genetics. Here we describe extremely high conversion of labeled arginine to other amino acids in fission yeast as well as a novel general solution to the problem that should be applicable to other organisms. As proof of principle, we quantitated changes in protein levels before and after cell division on a proteome-wide scale. We identified both up- and down-regulated proteins, including a novel protein involved in septation.  相似文献   
142.
Biogenesis and recycling of synaptic vesicles are accompanied by sorting processes that preserve the molecular composition of the compartments involved. In the present study, we have addressed the targeting of synaptobrevin 2/VAMP2 (vesicle-associated membrane protein 2), a critical component of the synaptic vesicle--fusion machinery, in a heterotypic context where its sorting is not confounded by the presence of other neuron-specific molecules. Ectopically expressed synaptophysin I interacts with VAMP2 and alters its default surface targeting to a prominent vesicular distribution, with no effect on the targeting of other membrane proteins. Protein-protein interaction is not sufficient for the control of VAMP2 sorting, which is mediated by the C-terminal domain of synaptophysin I. Synaptophysin I directs the sorting of VAMP2 to vesicles before surface delivery, without influencing VAMP2 endocytosis. Consistent with this, dynamin and alpha-SNAP (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein) mutants which block trafficking at the plasma membrane do not abrogate the effect of synaptophysin I on VAMP2 sorting. These results indicate that the sorting determinants of synaptic vesicle proteins can operate independently of a neuronal context and implicate the association of VAMP2 with synaptophysin I in the specification of the pathway of synaptic vesicle biogenesis.  相似文献   
143.
144.
There is some evidence that dogs can be naturally infected by Paracoccidioides brasiliensis in endemic areas of paracoccidioidomycosis. In order to evaluate canine infection with this fungus, a survey with 149 urban and 126 rural dogs was carried out using ELISA and intradermal tests with the gp43 antigen of P. brasiliensis in Uberaba, Minas Gerais state of Brazil. Forty-one out of 149 urban dogs were euthanatized and had their lungs, liver and spleen removed. One slice from each viscera was processed for histopathological examination and the remaining was homogenized and then cultivated on mycobiotic agar at room temperature and Fava-Netto medium at 35°C and observed for 12 weeks. Of urban dogs, 75 (50.3%) were small adult females, 56 (36%) were strays, while 93 (64%) had been donated to the municipal zoonosis control center. Nine (6.2%) had a positive intradermal test without statistical differences regarding gender, race, nutritional status or origin. No colonies with microscopic or morphology appearances resembling P. brasiliensis were isolated, nor granulomatous process or fungal structures were observed from histopathological examination. Eighty (53.6%) of the urban dogs presented seroreactivity, without statistical differences regarding gender, race, nutritional state, origin, or positive intradermal test. Of 126 rural dogs, 102 (80.5%) presented antibodies against gp43 antigen, and this was statistically significant in relation to the reactivity detected in urban dogs (P = 0.0001). Thus, dogs are commonly infected with P. brasiliensis, but they probably present natural resistance to develop paracoccidioidomycosis.  相似文献   
145.
Nonomuraea sp. ATCC 39727 belongs to the Streptosporangiaceae family of filamentous actinomycetes. This microorganism produces the teicoplanin-like glycopeptide A40926, which is the starting material for the synthesis of the second-generation glycopeptide dalbavancin. Notwithstanding the strain’s pharmaceutical relevance, the lack or poor efficiency of genetic tools to manipulate Nonomuraea sp. ATCC 39727 has hampered strain and product improvement. Here we report the development of gene transfer systems based on protoplast transformation and intergeneric conjugation from Escherichia coli. Efficiency of transformation and conjugation, followed by site specific or homologous recombination with the Nonomuraea sp. genome, were determined using the integrative plasmid pSET152 (5.7 kb), and the Supercos1 derivative cosmid A40ΔY (30 kb). To our knowledge, this is the first report of the transformation of protoplasts of Nonomuraea sp. ATCC 39727, even though the improved procedure for intergeneric conjugation makes it the method of choice for introducing large segments of DNA into Nonomuraea sp. ATCC 39727.  相似文献   
146.
147.
Many ecological systems can be represented as networks of interactions. A key feature in these networks is their organization into modules, which are subsets of tightly connected elements. We introduce MODULAR to perform rapid and autonomous calculation of modularity in network sets. MODULAR reads a set of files representing unipartite or bipartite networks, and identifies modules using two different modularity metrics widely used in the ecological networks literature. To estimate modularity, the software offers five optimization methods to the user. The software also includes two null models commonly used in studies of ecological networks to verify how the degree of modularity differs from two distinct theoretical benchmarks.  相似文献   
148.

Background

The western corn rootworm (WCR) is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi.

Methodology/Principal Findings

Total community (TC) DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii.

Conclusion/Significance

The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of the WCR. However, their biological role remains to be explored.  相似文献   
149.
An anthocyanin-producing suspension culture of Daucus carota (L.) cv. Flakkese was used as model system to study secondary metabolite production in cell culture at the individual cell level. An approach was set up in which growth and production of anthocyanins were investigated using a combination of biochemical analysis, image (colour) analysis and in vivo imaging. This novel approach was used to segment the culture in different subpopulations and dissect the productive process in the cell culture grown under two different conditions, known to differ mainly for oxygen supply and mixing intensity (volume of 50 ml or 20 ml in 250 ml flasks). The 20 ml batch cultures gave a higher content and yield of anthocyanins, which depended on a complex balance between events that positively or negatively affected anthocyanin production. A model is proposed in which the different ability of cells to respond to environmental stimuli and stress depends on the different amount of anthocyanins accumulated within cells.  相似文献   
150.
The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号