首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9306篇
  免费   652篇
  国内免费   3篇
  9961篇
  2022年   47篇
  2021年   99篇
  2020年   65篇
  2019年   84篇
  2018年   105篇
  2017年   95篇
  2016年   186篇
  2015年   297篇
  2014年   353篇
  2013年   501篇
  2012年   528篇
  2011年   550篇
  2010年   396篇
  2009年   330篇
  2008年   476篇
  2007年   534篇
  2006年   488篇
  2005年   529篇
  2004年   489篇
  2003年   470篇
  2002年   480篇
  2001年   129篇
  2000年   94篇
  1999年   120篇
  1998年   162篇
  1997年   104篇
  1996年   111篇
  1995年   124篇
  1994年   118篇
  1993年   121篇
  1992年   89篇
  1991年   82篇
  1990年   99篇
  1989年   92篇
  1988年   70篇
  1987年   77篇
  1986年   69篇
  1985年   75篇
  1984年   77篇
  1983年   79篇
  1982年   65篇
  1981年   78篇
  1980年   61篇
  1979年   57篇
  1978年   50篇
  1977年   51篇
  1976年   47篇
  1975年   43篇
  1974年   41篇
  1973年   37篇
排序方式: 共有9961条查询结果,搜索用时 15 毫秒
191.

Background

In recent years, efforts have been made to improve paediatric drug therapy. The aim of this research was to investigate any changes regarding the frequency and nature of adverse drug reactions (ADRs) in hospitalized children in one paediatric general medical ward over a 9-year period.

Methodology

Two prospective observational cohort studies were conducted at a large University hospital in Germany in 1999 and 2008, respectively. Children aged 0–18 years admitted to the study ward during the study periods were included. ADRs were identified using intensive chart review. Uni- and multivariable regression has been used for data analysis.

Results

A total of 520 patients (574 admissions) were included [1999: n = 144 (167); 2008: n = 376 (407)]. Patients received a total of 2053 drugs [median 3, interquartile range (IQR) 2–5]. 19% of patients did not receive any medication. Median length of stay was 4 days (IQR 3–7; range 1–190 days) with a significantly longer length of stay in 1999. The overall ADR incidence was 13.1% (95% CI, 9.8–16.3) varying significantly between the two study cohorts [1999: 21.9%, 95% CI, 14.7–29.0; 2008: 9.2%, 95% CI, 5.9–12.5 (p<0.001)]. Antibacterials and corticosteroids for systemic use caused most of the ADRs in both cohorts (1999; 2008). Exposure to systemic antibacterials decreased from 62.9% to 43.5% whereas exposure to analgesics and anti-inflammatory drugs increased from 17.4% to 45.2%, respectively. The use of high risk drugs decreased from 75% to 62.2%. In 1999, 45.7% and in 2008 96.2% of ADRs were identified by treating clinicians (p<0.001).

Conclusions

Between 1999 and 2008, the incidence of ADRs decreased significantly. Improved treatment strategies and an increased awareness of ADRs by physicians are most likely to be the cause for this positive development. Nevertheless further research on ADRs particularly in primary care and the establishment of prospective pharmacovigilance systems are still needed.  相似文献   
192.
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.  相似文献   
193.
194.
The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox)). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi) monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.  相似文献   
195.
Autophagy is the major pathway for the delivery of cytoplasmic material to the vacuole or lysosome. Selective autophagy is mediated by cargo receptors, which link the cargo to the scaffold protein Atg11 and to Atg8 family proteins on the forming autophagosomal membrane. We show that the essential kinase Hrr25 activates the cargo receptor Atg19 by phosphorylation, which is required to link cargo to the Atg11 scaffold, allowing selective autophagy to proceed. We also find that the Atg34 cargo receptor is regulated in a similar manner, suggesting a conserved mechanism.  相似文献   
196.
We report thermal recovery kinetics of the lit state into the parental dark state, measured for the blue light-sensing photoreceptor YtvA inside overexpressing E. coli and B. subtilis bacterial cells, performed for the wild type and several mutated proteins. Recovery was followed as a recovery of the fluorescence, as this property is only found for the parental but not for the photochemically generated lit state. When cells were deposited onto a microscope glass plate, the observed thermal recovery rate in the photocycle was found ca. ten times faster in comparison to purified YtvA in solution. When the E. coli or B. subtilis colonies were soaked in an isotonic buffer, the dark relaxation became again much slower and was very similar to that observed for YtvA in solution. The observed effects show that rate constants can be tuned by the cellular environment through factors such as hydration.  相似文献   
197.
Sucrose (2,5–1000 mmol l–1), labeled with [14C]sucrose, was taken up by the xylem when supplied to one end of a 30-cm-long leaf strip of Zea mays L. cv. Prior. The sugar was loaded into the phloem and transported to the opposite end, which was immersed in diluted Hoagland's nutrient solution. When the Hoagland's solution at the opposite end was replaced by unlabeled sucrose solution of the same molarity as the labeled one, the two solutions met near the middle of the leaf strip, as indicated by radioautographs. In the dark, translocation of 14C-labeled assimilates was always directed away from the site of sucrose application, its distance depending on sugar concentration and translocation time. When sucrose was applied to both ends of the leaf strip, translocation of 14C-labeled assimilates was directed toward the lower sugar concentration. In the light, transport of 14-C-labeled assimilates can be directed (1) toward the morphological base of the leaf strip only (light effect), (2) toward the base and away from the site of sucrose application (light and sucrose effect), or (3) away from the site of sucrose application independent of the (basipetal or acropetal) direction (sucrose effect). The strength of a sink, represented by the darkened half of a leaf strip, can be reduced by applying sucrose (at least 25 mmol l–1) to the darkened end of the leaf strip. However, equimolar sucrose solutions applied to both ends do not affect the strength of the dark sink. Only above 75 mmol l–1 sucrose was the sink effect of the darnened part of the leaf strip reduced. Presumably, increasing the sucrose concentration replenishes the leaf tissue more rapidly, and photosynthates from the illuminated part of the leaf strip are imported to a lesser extent by the dark sink.Supported by Deutsche Forschungsgemeinschaft  相似文献   
198.
199.
200.
We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a E157*Mhda) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a E157*Mhda mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a E157*Mhda mice are the first mouse model for a mutation within the Fam46a gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号