首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114744篇
  免费   7289篇
  国内免费   129篇
  2022年   717篇
  2021年   1544篇
  2020年   1256篇
  2019年   1414篇
  2018年   2856篇
  2017年   2510篇
  2016年   3439篇
  2015年   4695篇
  2014年   4872篇
  2013年   6461篇
  2012年   7430篇
  2011年   6624篇
  2010年   4415篇
  2009年   3394篇
  2008年   5369篇
  2007年   5067篇
  2006年   4961篇
  2005年   4187篇
  2004年   4217篇
  2003年   3815篇
  2002年   3644篇
  2001年   3099篇
  2000年   2839篇
  1999年   2299篇
  1998年   1030篇
  1997年   837篇
  1996年   819篇
  1995年   759篇
  1992年   1461篇
  1991年   1353篇
  1990年   1300篇
  1989年   1332篇
  1988年   1104篇
  1987年   1105篇
  1986年   1027篇
  1985年   1123篇
  1984年   971篇
  1983年   857篇
  1982年   679篇
  1979年   947篇
  1978年   736篇
  1977年   756篇
  1976年   685篇
  1975年   837篇
  1974年   875篇
  1973年   838篇
  1972年   739篇
  1970年   693篇
  1969年   777篇
  1968年   765篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
42.
The ilvI and ilvH gene products were identified physically by electrophoretic analysis of in vivo-labelled polypeptides produced in minicells from plasmids carrying the wild-type ilvIH operon of Escherichia coli K-12 and derivatives of it. An analysis of the distribution of methionine residues in the amino-terminal portion of micro-quantities of the ilvI product eluted from gel showed that the translational start of the ilvI gene is the promoter-proximal one of three putative methionine codons predicted from the DNA sequence.  相似文献   
43.
Fifty fresh isolates of Trypanosoma cruzi from Triatoma dimidiata vectors and 31 from patients with Chagas disease were analysed for DNA polymorphisms within the 432-bp core region of the cruzipain gene which encodes the active site of cathepsin L-like cystein proteinase. The cruzipain gene showed signs of polymorphism consisting of four different DNA sequences in Central and South American isolates of T. cruzi. The PCR fragments of Guatemalan isolates could be divided into three groups, Groups 1, 2 and 3, based on different patterns of single-stranded DNA conformation polymorphism. All of the strains isolated from Brazil, Chile, and Paraguay, except for the CL strain, showed a Group 4 pattern. Two to four isolates from each group were analysed by cloning and sequencing. A silent mutation occurred between Groups 1 and 2, and five nucleotides and two aa substitutions were detected between Groups 1 and 3. The DNA sequence of Group 4 contained five nucleotides and one aa substitution from Group 1. All of the DNA sequences corresponded well with the single-stranded DNA conformation polymorphism. The Group 1 isolates, the majority in the Guatemalan population (70/81, 86.4%), were isolated from both triatomines and humans, but Group 3 were isolated only from humans. Moreover, the Group 2 isolates were detected only in triatomine vectors (9/50; 18%), but never in humans (0/32, P<0.05) suggesting that this group has an independent life-cycle in sylvatic animals and is maintained by reservoir hosts other than humans.  相似文献   
44.
Biomechanics and Modeling in Mechanobiology - Cell migration is a process of crucial importance for the human body. It is responsible for important processes such as wound healing and tumor...  相似文献   
45.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
46.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
47.
48.
The murine cytomegalovirus m02 gene family encodes putative type I membrane glycoproteins named m02 through m16. A subset of these genes were fused to an epitope tag and cloned into an expression vector. In transfected and murine cytomegalovirus-infected cells, m02, m04, m05, m06, m07, m09, m10, and m12 localized to cytoplasmic structures near the nucleus, whereas m08 and m13 localized to a filamentous structure surrounding the nucleus. Substitution mutants lacking the m02 gene (SMsubm02) or the entire m02 gene family (SMsubm02-16) grew like their wild-type parent in cultured cells. However, whereas SMsubm02 was as pathogenic as the wild-type virus, SMsubm02-16 was markedly less virulent. SMsubm02-16 produced less infectious virus in most organs compared to wild-type virus in BALB/c and C57BL/6J mice, but it replicated to wild-type levels in the organs of immunodeficient gamma(c)/Rag2 mice, lacking multiple cell types including natural killer cells, and in C57BL/6J mice depleted of natural killer cells. These results argue that one or more members of the m02 gene family antagonize natural killer cell-mediated immune surveillance.  相似文献   
49.
These siblings of a Czech family aged 21, 19 and 6 years, respectively, with congenital dyserythropoietic anemia, type II, (HEMPAS) are reported. In two elder siblings ferrokinetic studies revealed a rapid plasma 59Fe clearance, markedly decreased erythrocyte incorporation and shortened 51Cr red-cell survival. Direct anti-globulin test was found positive in one of them. Further investigations revealed low values of blood plasma cholesterol, total lipids, beta-lipoproteins, beta-carotine and vitamin E and A as well as low values of the prothrombin complex. Liver biopsy demonstrated siderosis and disseminated intravascular coagulation in the liver in both patients. The possible reasons for these humoral aberrations are discussed.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号