首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   19篇
  2020年   1篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有71条查询结果,搜索用时 78 毫秒
41.
Several coarse-scale studies have demonstrated a positive correlation between biodiversity and human population density. In this paper this relationship is studied for part of the Andean highland, on a finer spatial scale than in earlier studies, and comparing bird distribution data with pre-Columbian as well as contemporary population centres. A particularly close correspondence was found between ancient population centres and high numbers of species with small distributions. This suggests that the growth of resident human cultures was related, in some way, to local factors which—over a much longer time-scale—stimulated the process of evolution of new species. This correspondence may be a consequence of climate moderation in the mountain areas leading to local persistence, of wild species as well as human communities. However, the result also suggests that we need to study to what extent high biodiversity as such, under certain conditions, yields environmental services which were important for people. It also suggests that traditional efforts to preserve biodiversity in wilderness areas with few people should be supplemented with efforts to promote a more sustainable development in the populated areas, allowing cloud forest and other biologically rich habitats to persist in suitable places near population centres.  相似文献   
42.
Aim In order to advance our understanding of the assembly of communities on islands and to elucidate the function of different islands in creating regional and subregional distribution patterns, we identify island biogeographical roles on the basis of the distribution of the islands’ biota within the archipelago. We explore which island characteristics determine island biogeographical roles. Furthermore, we identify biogeographical subregions, termed modules. Location Wallacea in Indonesia, and the West Indies in the Caribbean Sea. Methods We use a network approach to detect island biogeographical roles and avian biogeographical modules. To designate the biogeographical role of an island, each island is assigned two coordinates, l and r. The position of an island in lr space characterizes its role, namely as peripheral, connector, module hub, or network hub. Island characteristics are tested as predictors of l and r. Results Both Wallacea and the West Indies were found to be significantly modular and divided into four biogeographical modules. The four modules identified within Wallacea each contain all existing island roles, whereas no module in the West Indies represents all possible roles. Island area and elevation appeared to be the most important determinants of an island’s l score, while measurements of isolation essentially determined the r score. Main conclusions In both Wallacea and the West Indies, the geographic structuring into biogeographical modules corresponds well with our knowledge of past connections and contemporary factors. In both archipelagos, large, mountainous islands are identified as hubs and are thus responsible for faunal coherence within modules (module hubs) and across the entire archipelago (network hubs). We thus interpret these as source islands for the surrounding islands in their module (module hubs) or for the entire archipelago (network hubs). Islands positioned marginally in their module and distant from the mainland are identified as connectors or network hubs, behaving as sinks and stepping stones for dispersing species. Modularity and predictors of biogeographical roles are similar for Wallacea and the West Indies, whereas the build‐up of biogeographical modules and the assortment of roles depend on the spatial constellation of islands in each archipelago.  相似文献   
43.
Biogeographical systems can be analyzed as networks of species and geographical units. Within such a biogeographical network, individual species may differ fundamentally in their linkage pattern, and therefore hold different topological roles. To advance our understanding of the relationship between species traits and large‐scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular network of islands and species in Wallacea and the West Indies. We test whether species traits – including habitat requirements, altitudinal range‐span, feeding guild, trophic level, and body length – correlate with species roles. In both archipelagos, habitat requirements, altitudinal range‐span and body length show strong relations to species roles. In particular, species that occupy coastal‐ and open habitats, as well as habitat generalists, show higher proportions of connectors and network hubs and thus tend to span several biogeographical modules (i.e. subregions). Likewise, large body size and a wide altitudinal range‐span are related to a wide distribution on many islands and across several biogeographical modules. On the other hand, species restricted to interior forest are mainly characterized as peripherals and, thus, have narrow and localized distributions within biogeographical modules rather than across the archipelago‐wide network. These results suggest that the ecological amplitude of a species is highly related to its geographical distribution within and across bio geographical subregions and furthermore supports the idea that large‐scale species distributions relate to distributions at the local community level. We finally discuss how our biogeographical species roles may correspond to the stages of the taxon cycle and other prominent theories of species assembly.  相似文献   
44.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   
45.

Background  

The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group.  相似文献   
46.
By comparing geographical patterns of old and new species with historical and ecological processes, interpretations can be made about time patterns of diversification. Such interpretations can form a basis for developing rationales for ranking biodiversity conservation priorities. The results of the comprehensive study of avian DNA were used to compare geographical distributions in Africa and South America of species of strong Plio-Pleistocene radiations and species representing older monophyletic branches. Striking patterns, some of them overlooked so far, were found. Most old species are widespread across a physiognomic and climatic domain, such as lowland rainforests, and therefore, are not specific conservation targets. In contrast, new species have evolved in well defined places with a special local environment, in particular in ecologically equable places inside geologically complex ecotonal regions. High species richness and taxonomic diversity, where maintained over wide areas by steady habitat alteration through patch dynamics, may be easiest to protect by general reforms that integrate regional development and protection of ecosystem services, rather than by strictly site-oriented projects. Areas of active speciation, although small, may have important regulatory functions and a critical role for maintaining evolutionary fronts'. The Tropical Andes Region includes a dozen such places. There is a congruence between the occurrence of old species which have relictual distributions and aggregates of limited-range component species of recent vicariance patterns, indicating that vicariance events take place mainly by isolation in extremely ecologically stable areas. Although these places do not necessarily have the highest taxic diversity, they should be top priorities for rapid and concentrated conservation action.  相似文献   
47.
Aim We use molecular‐based phylogenetic methods and ancestral area reconstructions to examine the systematic relationships and biogeographical history of the Indo‐Pacific passerine bird family Pachycephalidae (whistlers). Analysed within an explicit spatiotemporal framework, we elucidate distinct patterns of diversification across the Melanesian and Indonesian archipelagos and explore whether these results may be explained by regional palaeogeological events. We further assess the significance of upstream colonization and its role in species accumulation within the region. Location The Indo‐Pacific region, with an emphasis on the archipelagos on either side of the Australo‐Papuan continent. Methods We used three nuclear and two mitochondrial markers to construct a molecular phylogenetic hypothesis of the Pachycephalidae by analysing 35 of the 49 species known to belong to the family. The programs diva and Mr Bayes were used to reconstruct ancestral area relationships and to examine biogeographical relationships across the family, and beast was implemented to assess the timing of dispersal events. Results We constructed a molecular phylogenetic hypothesis for the Pachycephalidae and estimated divergence times and ancestral area relationships. Different colonization patterns are apparent for the Pachycephalidae in the Indonesian and the Melanesian archipelagos. The Indonesian archipelago was colonized numerous times, whereas one or two colonizations of the Melanesian archipelagos account for the entire diversity of that region. After initial colonization of the Melanesian archipelagos some whistler species recolonized Australia and may have commenced a second round of colonization into Melanesia. Main conclusions The contrasting dispersal patterns of whistlers in archipelagos on either side of the Australo‐Papuan continent are congruent with the arrangement and history of islands in each of the regions and demonstrate that knowledge of palaeogeography is important for an understanding of evolutionary patterns in archipelagos. We also highlight that recolonization of continents from islands may be more common than has previously been assumed.  相似文献   
48.
The Pygmy Bushtit is confined to the montane forests of Java. It is the world's smallest passerine and morphologically resembles a small, drab long‐tailed tit or bushtit (Aegithalidae). In its behaviour the Pygmy Bushtit show similarities with the members of the Aegithalidae, but owing to its small size and isolated geographical distribution relative to the other members of the Aegithalidae, it has always been placed in a monotypic genus within the family. The affinities of the Pygmy Bushtit have never been tested in a phylogenetic context and the species has to date not been included in any molecular studies. In this study we use sequence data from four different genetic markers to place it in the passerine phylogenetic tree. Our results confirm the inclusion of the Pygmy Bushtit in the Aegithalidae, but rather than being an isolated lineage, our results strongly suggest that it is nested in the Aegithalos clade, and most closely related to the Black‐throated Bushtit Aegithalos concinnus. The range of the Black‐throated Bushtit extends south into subtropical Indochina, with an isolated subspecies occurring in southern Vietnam. The Black‐throated Bushtit contains several morphologically and genetically distinct lineages, which could represent distinct species, but the phylogenetic relationships within this complex are poorly resolved and partly in conflict with current taxonomic treatment based on morphology.  相似文献   
49.
Latitudinal patterns of biodiversity have been studied for centuries, but it is only during the last decades that species interaction networks have been used to examine the proposed latitudinal gradient of biotic specialization. These studies have given idiosyncratic results, which may either be because of genuine biological differences between systems, different concepts and scales used to quantify biotic specialization or because the methodological approaches used to compare interaction networks were inappropriate. Here we carefully examine the latitudinal specialization gradient using a global dataset of avian plant–frugivore assemblages and interaction networks. In particular, we test whether network‐derived specialization patterns differ from patterns based on assemblage‐level information on avian dietary preferences on specific food types. We found that network‐derived measures of specialization (complementary specialization H2′ and < d’>, modularity Q) increased with latitude, i.e. frugivorous birds divide the niche of fruiting plants most finely at high latitudes where they also formed more modular interaction networks than at tropical latitudes. However, the strength and significance of the relationship between specialization metrics and latitude was influenced by the methodological approach. On the other hand, assemblage‐level information on avian specialization on fruit diet (i.e. the proportion of obligate frugivorous bird species feeding primarily on fruit) revealed an opposed latitudinal pattern as more bird species were specialized on fruit diet in tropical than in temperate assemblages. This difference in the latitudinal specialization gradient reflects that obligate frugivores require a high diversity of fruit plants, as observed in tropical systems, and fulfil more generalized roles in plant–frugivore networks than bird species feeding on different food types. Future research should focus on revealing the underlying ecological, historical and evolutionary mechanisms shaping these patterns. Our results highlight the necessity of comparing different scales of biotic specialization for a better understanding of geographical patterns of specialization in resource–consumer interactions.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号