首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   2篇
  174篇
  2023年   2篇
  2022年   6篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   11篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   6篇
  1969年   1篇
  1968年   2篇
排序方式: 共有174条查询结果,搜索用时 31 毫秒
51.
Human ATP1AL1 and corresponding genes of other mammals encode the catalytic α subunit of a non-gastric ouabain-sensitive H,K-ATPases, the ion pump presumably involved in maintenance of potassium homeostasis. The tissue specificity of the expression of these genes in different species has not been analyzed in detail. Here we report comparative RT-PCR screening of mouse, rat, rabbit, human, and dog tissues. Significant expression levels were observed in the skin, kidney and distal colon of all species (with the exception of the human colon). Analysis of rat urogenital organs also revealed strong expression in coagulating and preputial glands. Relatively lower expression levels were detected in many other tissues including brain, placenta and lung. In rabbit brain the expression was found to be specific to choroid plexus and cortex. Prominent similarity of tissue-specific expression patterns indicates that animal and human non-gastric H,K-ATPases are indeed products of homologous genes. This is also consistent with the high sequence similarity of non-gastric H,K-ATPases (including partial sequences of hitherto unknown cDNAs for mouse and dog proteins).  相似文献   
52.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   
53.

Background:

Half of the cases of vision loss in people under 60 years of age have been attributed to age-related macular degeneration (AMD). This is a multifactorial disease with late onset. It has been demonstrated that many different genetic loci are implicated in the risk of developing AMD in different populations. In the current study, we investigated the association of high-temperature ‎requirement A-1 (HTRA1) gene polymorphisms with the risk of developing AMD in the Iranian population.

Methods:

Genomic DNA samples were extracted from 120 patients with AMD and 120 healthy age- and sex-matched controls. A 385 base-pair fragment of the HTRA1 gene promoter region was amplified using the polymerase chain reaction (PCR) technique and sequenced. The frequencies of the alleles were calculated and statistical analysis was performed using SPSS software.

Results:

Our study demonstrated that the rate of polymorphisms rs11200638 -625 G>A and rs2672598 -487T>C were significantly greater in AMD patients than in healthy controls from the Iranian population.

Conclusions:

The results of our study indicate that HTRA1 gene promoter region polymorphisms are associated with the risk of developing AMD in the Iranian population.Key Words: HTRA1, Single Nucleotide Polymorphisms, Macular Degeneration, Iran  相似文献   
54.
Nontoxic concentrations of ouabain, causing partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase, induce hypertrophy and several growth-related genes through signal pathways that include the activation of Ras and p42/44 mitogen-activated protein kinase (MAPK). The aim of this work was to examine the ouabain-induced events upstream of the Ras/MAPK cascade. Treatment of myocytes with genistein antagonized ouabain-induced activation of the MAPK, suggesting that protein tyrosine phosphorylation has a role. Tyrosine phosphorylation of several myocyte proteins was increased rapidly upon cell exposure to ouabain. Lowering of extracellular K(+) had a similar ouabain-like effect. Ouabain also increased protein tyrosine phosphorylation in A7r5, HeLa, and L929 cells. In cardiac myocytes and A7r5 cells, herbimycin A antagonized the ouabain-induced increase in protein tyrosine phosphorylation and MAPK activation. In both cell types, ouabain stimulated Src kinase activity, Src translocation to the Triton-insoluble fraction, Src association with the epidermal growth factor receptor, and the tyrosine phosphorylation of this receptor on site(s) other than its major autophosphorylation site, Tyr(1173). The findings suggest that (a) the ouabain-induced activation of Src and the Src-induced phosphorylation of the growth factor receptor provide the scaffolding for the recruitment of adaptor proteins and Ras and the activation of Ras/MAPK cascade; and (b) the activation of such pathways may be a common feature of the signal-transducing function of Na(+)/K(+)-ATPase in most cells.  相似文献   
55.
Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase   总被引:2,自引:0,他引:2  
Ouabain binding toNa+/K+-ATPase activates Src/epidermal growthfactor receptor (EGFR) to initiate multiple signal pathways thatregulate growth. In cardiac myocytes and the intact heart, the earlyouabain-induced pathways that cause rapid activations of ERK1/2 alsoregulate intracellular Ca2+ concentration([Ca2+]i) and contractility. The goal of thisstudy was to explore the role of caveolae in these early signalingevents. Subunits of Na+/K+-ATPase were detectedby immunoblot analysis in caveolae isolated from cardiac myocytes,cardiac ventricles, kidney cell lines, and kidney outer medulla byestablished detergent-free procedures. Isolated rat cardiac caveolaecontained Src, EGFR, ERK1/2, and 20-30% of cellular contents of1- and 2-isoforms ofNa+/K+-ATPase, along with nearly all ofcellular caveolin-3. Immunofluorescence microscopy of adult cardiacmyocytes showed the presence of caveolin-3 and -isoforms inperipheral sarcolemma and T tubules and suggested their partialcolocalization. Exposure of contracting isolated rat hearts to apositive inotropic dose of ouabain and analysis of isolated cardiaccaveolae showed that ouabain caused 1) no change in totalcaveolar ERK1/2, but a two- to threefold increase in caveolarphosphorylated/activated ERK1/2; 2) no change in caveolar 1-isoform and caveolin-3; and 3) 50-60%increases in caveolar Src and 2-isoform. These findings,in conjunction with previous observations, show that components of thepathways that link Na+/K+-ATPase to ERK1/2 and[Ca2+]i are organized within cardiac caveolaemicrodomains. They also suggest that ouabain-induced recruitments ofSrc and 2-isoform to caveolae are involved in themanifestation of the positive inotropic effect of ouabain.

  相似文献   
56.
Inhibition of (Na+ + K+)-dependent adenosine triphosphatase phosphatase by vanadate is thought to occur through the tight binding of vanadate to the same site from which Pi is released. To see if ATP binds to [48V] vanadate-enzyme complex, just as it does to the phosphoenzyme, the effects of Na+, K+, and ATP on the dissociation rate of the complex at 10 degrees C were studied. The rate constant was increased by Na+, and this increase was blocked by K+, indicating that either Na+ or K+ binds to the complex. ATP alone, or in combination with K+, had no effect on the rate constant. In the presence of Na+, however, ATP caused a further increase in the rate constant. The value of K0.5 of Na+ was the same in the presence or absence of ATP; K0.5 of ATP (0.2 mM) did not seem to change significantly when Na+ concentration was varied, and K0.5 of K+, at a constant Na+ concentration, was the same in the presence or absence of ATP. The data indicate that ATP binds to the enzyme-vanadate complex regardless of the presence or absence of Na+ or K+, but it affects the dissociation rate only when Na+ is bound simultaneously. The value of K0.5 of Na+ decreased as pH was increased in the range of 6.5-7.8, but K0.5 of ATP was independent of pH. Demonstration of ATP binding to the enzyme-vanadate complex provides further support for the suggestion that the oligomeric enzyme contains a low-affinity regulatory site for ATP that is distinct from the interacting high-affinity catalytic sites.  相似文献   
57.
Cultured rat cardiac myocytes and A7r5 cells were transfected with an adenoviral vector used earlier for in vivo expression of functional alpha(2)-isoform of the catalytic subunit of rat Na(+)-K(+)-ATPase. Expressions of truncated forms of alpha(2), but little or no intact alpha(2), were detected, suggesting the rapid degradation of alpha(2) in these cultured cells. In neonatal myocytes normally containing the alpha(1)- and the alpha(3)-isoforms, expression of the alpha(2)-fragment led to 1) a significant decrease in the level of endogenous alpha(1)-protein and a modest decrease in alpha(3)-protein, 2) decreases in mRNAs of alpha(1) and alpha(3), 3) decrease in Na(+)-K(+)-ATPase function measured as ouabain-sensitive Rb(+) uptake, 4) increase in intracellular Ca(2+) concentration similar to that induced by ouabain, and 5) eventual loss of cell viability. These findings indicate that the alpha(2)-fragment downregulates endogenous Na(+)-K(+)- ATPase most likely by dominant negative interference either with folding and/or assembly of the predominant housekeeping alpha(1)-isoform or with signal transducing function of the enzyme. Demonstration of rise in intracellular Ca(2+) resulting from alpha(1)-downregulation 1) does not support the previously suggested special roles of less abundant alpha(2)- and alpha(3)-isoforms in the regulation of cardiac Ca(2+), 2) lends indirect support to proposals that observed decrease in total Na(+)-K(+)-ATPase of the failing heart may be a mechanism to compensate for impaired cardiac contractility, and 3) suggests the potential therapeutic utility of dominant negative inhibition of Na(+)-K(+)-ATPase.  相似文献   
58.
Na+, K+-ATPase activities of the red cells obtained from 75 patients for whom serum digoxin determinations had been ordered are compared with the enzyme activities of the 34 blood samples known not to have been exposed to digitalis. Partial inhibition of the enzyme in a substantial number of samples obtained from patients is observed. These results, in conjunction with previous observations on changes in red cell electrolytes of the digitalized subjects, provide strong support for the assumption that the inhibition of red cell Na+, K+-ATPase may occur in the course of therapy with digitalis.  相似文献   
59.
Molecular Biology Reports - CD47, a member of the immunoglobulin superfamily, is an important “Don’t Eat-Me” signal in phagocytosis process [clearance of apoptotic cells] as well...  相似文献   
60.
GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r 2>0.99) between the two series of data. However, the GATE/GEANT data were on average −0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10–20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50–1000 keV. For photon energies of 10–30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10–30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50–1,000 keV, the bias was negligible and the agreement was acceptable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号