首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   56篇
  国内免费   2篇
  2021年   5篇
  2019年   5篇
  2016年   5篇
  2015年   14篇
  2014年   14篇
  2013年   18篇
  2012年   18篇
  2011年   34篇
  2010年   17篇
  2009年   24篇
  2008年   32篇
  2007年   25篇
  2006年   21篇
  2005年   16篇
  2004年   24篇
  2003年   19篇
  2002年   17篇
  2001年   10篇
  2000年   17篇
  1999年   11篇
  1998年   8篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1992年   5篇
  1990年   6篇
  1989年   8篇
  1988年   13篇
  1987年   10篇
  1986年   11篇
  1985年   9篇
  1984年   6篇
  1983年   12篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1977年   7篇
  1976年   4篇
  1975年   9篇
  1974年   7篇
  1973年   5篇
  1972年   9篇
  1971年   6篇
  1970年   8篇
  1969年   9篇
  1968年   7篇
  1967年   10篇
  1966年   10篇
  1965年   6篇
排序方式: 共有622条查询结果,搜索用时 31 毫秒
61.
The pathway of transport of the cystic fibrosis transmembrane regulator (CFTR) through the early exocytic pathway has not been examined. In contrast to most membrane proteins that are concentrated during export from the ER and therefore readily detectable at elevated levels in pre-Golgi intermediates and Golgi compartments, wild-type CFTR could not be detected in these compartments using deconvolution immunofluorescence microscopy. To determine the basis for this unusual feature, we analyzed CFTR localization using quantitative immunoelectron microscopy (IEM). We found that wild-type CFTR is present in pre-Golgi compartments and peripheral tubular elements associated with the cis and trans faces of the Golgi stack, albeit at a concentration 2-fold lower than that found in the endoplasmic reticulum (ER). delta F508 CFTR, a mutant form that is not efficiently delivered to the cell surface and the most common mutation in cystic fibrosis, could also be detected at a reduced concentration in pre-Golgi intermediates and peripheral cis Golgi elements, but not in post-Golgi compartments. Our results suggest that the low level of wild-type CFTR in the Golgi region reflects a limiting step in selective recruitment by the ER export machinery, an event that is largely deficient in delta F508. We raise the possibility that novel modes of selective anterograde and retrograde traffic between the ER and the Golgi may serve to regulate CFTR function in the early secretory compartments.  相似文献   
62.
A human cell line (U5A) lacking the type I interferon (IFN) receptor chain 2 (IFNAR2c) was used to determine the role of the IFNAR2c cytoplasmic domain in regulating IFN-dependent STAT activation, interferon-stimulated gene factor 3 (ISGF3) and c-sis-inducible factor (SIF) complex formation, gene expression, and antiproliferative effects. A panel of U5A cells expressing truncation mutants of IFNAR2c on their cell surface were generated for study. Janus kinase (JAK) activation was detected in all mutant cell lines; however, STAT1 and STAT2 activation was observed only in U5A cells expressing full-length IFNAR2c and IFNAR2c truncated at residue 462 (R2.462). IFNAR2c mutants truncated at residues 417 (R2. 417) and 346 (R2.346) or IFNAR2c mutant lacking tyrosine residues in its cytoplasmic domain (R2.Y-F) render the receptor inactive. A similar pattern was observed for IFN-inducible STAT activation, STAT complex formation, and STAT-DNA binding. Consistent with these data, IFN-inducible gene expression was ablated in U5A, R2.Y-F, R2.417, and R2.346 cell lines. The implications are that tyrosine phosphorylation and the 462-417 region of IFNAR2c are independently obligatory for receptor activation. In addition, the distal 53 amino acids of the intracellular domain of IFNAR2c are not required for IFN-receptor mediated STAT activation, ISFG3 or SIF complex formation, induction of gene expression, and inhibition of thymidine incorporation. These data demonstrate for the first time that both tyrosine phosphorylation and a specific domain of IFNAR2c are required in human cells for IFN-dependent coupling of JAK activation to STAT phosphorylation, gene induction, and antiproliferative effects. In addition, human and murine cells appear to require different regions of the cytoplasmic domain of IFNAR2c for regulation of IFN responses.  相似文献   
63.
Black, Jewish, and Interracial: It's Not the Color of Your Skin but the Race of Your Kin, and Other Myths of Identity. Katya Gibel Azoulay. Durham, NC: Duke University Press, 1997.220 pp.  相似文献   
64.
65.
66.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   
67.
68.
Research into dolphin swimming historically was guided by false assumptions pertaining to maximum speed. Accurate measurements on swimming speed and duration of effort of free-ranging dolphins are rare. To examine the variance of maximum swimming speeds, nearly 2,000 speed measurements were obtained for both captive and free-ranging dolphins, including Tursiops truncatus, Pseudorca crassidens, Delphinus capensis , and Delphinus delpbis . Measurements were made from videotapes of dolphins trained to swim fast around a large pool or jumping to a maximum height, videotapes of captured wild dolphins immediately after release, and sequential aerial photographs of a school of free-ranging dolphins startled by a passing airplane. Maximum horizontal speeds for trained animals were 8.2 m/sec for T. truncatus , 8.0 m/sec for D. delphis , and 8.0 m/sec for P. crassidens . Maximum speeds for T. truncatus swimming upwards, prior to vertical leaps ranged from 8.2 to 11.2 m/sec. Wild T. truncatus demonstrated a maximum speed of 5.7 m/sec. Maximum swimming speed of free-ranging D. capensis responding to multiple passes by a low flying airplane was 6.7 m/sec. There was no evidence that the freeranging dolphins have superior swimming capabilities to captive animals. The results of this study imply that realistic maximum swimming speeds for dolphins are lower than previous reports which were based on sparse data and imprecise measurement techniques.  相似文献   
69.
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35 degrees C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35 degrees C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology.  相似文献   
70.
Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号