全文获取类型
收费全文 | 5519篇 |
免费 | 493篇 |
国内免费 | 2篇 |
专业分类
6014篇 |
出版年
2022年 | 38篇 |
2021年 | 76篇 |
2019年 | 55篇 |
2018年 | 70篇 |
2017年 | 76篇 |
2016年 | 112篇 |
2015年 | 194篇 |
2014年 | 215篇 |
2013年 | 227篇 |
2012年 | 275篇 |
2011年 | 249篇 |
2010年 | 180篇 |
2009年 | 170篇 |
2008年 | 251篇 |
2007年 | 262篇 |
2006年 | 216篇 |
2005年 | 215篇 |
2004年 | 203篇 |
2003年 | 204篇 |
2002年 | 194篇 |
2001年 | 176篇 |
2000年 | 171篇 |
1999年 | 155篇 |
1998年 | 93篇 |
1997年 | 73篇 |
1996年 | 62篇 |
1995年 | 54篇 |
1994年 | 50篇 |
1993年 | 40篇 |
1992年 | 103篇 |
1991年 | 88篇 |
1990年 | 102篇 |
1989年 | 79篇 |
1988年 | 81篇 |
1987年 | 62篇 |
1986年 | 69篇 |
1985年 | 79篇 |
1984年 | 59篇 |
1983年 | 42篇 |
1982年 | 51篇 |
1980年 | 38篇 |
1979年 | 69篇 |
1978年 | 50篇 |
1977年 | 40篇 |
1975年 | 39篇 |
1974年 | 55篇 |
1973年 | 42篇 |
1971年 | 37篇 |
1969年 | 37篇 |
1968年 | 39篇 |
排序方式: 共有6014条查询结果,搜索用时 46 毫秒
101.
102.
ADP-ribosylation factor 1 (Arf1) plays an important role in early and intra-Golgi protein trafficking. During this process, Arf1 interacts with many different proteins and other molecules that regulate its state of activation or are involved in its intracellular function. To determine which of these proteins interact directly with Arf1 during coat protein type I (COPI) vesicle biogenesis, we probed the molecular environment of Arf1 by use of site-specific photocrosslinking. This method was first used successfully in the field of protein trafficking to study the mechanisms involved in protein translocation across the endoplasmic reticulum during protein synthesis. In such a hydrophobic environment, crosslink yields of up to 30% have been observed. We have now applied this method to study the mechanism of vesicle budding from the cytosolic face of the Golgi apparatus, an aqueous environment. Although the crosslink yield is significantly lower under these conditions, due to predominant reaction of the photolabile probes with water, a specific interaction of Arf1 with subunits of coatomer, the major coat protein of COPI vesicles, could readily be identified. 相似文献
103.
Background and Aims
Seeds can accumulate in the soil or elsewhere, such as on the stems of palms when these are covered by persistent sheaths. These sheaths could act as a safe site for some species. Here, we studied whether persistent sheaths of the palm Attalea phalerata (Arecaceae) are available sites for seed accumulation in the Pantanal wetland of Brazil. We also investigated whether the composition, richness and diversity of species of seeds in the persistent sheaths are determined by habitat (riparian forest and forest patches) and/or season (wet and dry).Methods
All accumulated material was collected from ten persistent sheaths along the stems of 64 A. phalerata individuals (16 per habitat and 16 per season). The material was then individually inspected under a stereomicroscope to record seed species and number.Key Results
Of the 640 sheaths sampled, 65 % contained seeds (n = 3468). This seed bank included 75 species belonging to 12 families, and was primarily composed of small, endozoochoric seeds, with a few abundant species (Cecropia pachystachya and Ficus pertusa). Moraceae was the richest family (four species) and Urticaceae the most abundant (1594 seeds). Stems of A. phalerata in the riparian forest had 1·8 times more seeds and 1·3 times more species than those in forest patches. In the wet season we sampled 4·1 times more seeds and 2·2 more species on palm stems than in the dry season. Richness did not differ between habitats, but was higher in the wet season. Abundance was higher in forest patches and in the wet season.Conclusions
Attalea phalerata stems contain a rich seed bank, comparable to soil seed banks of tropical forests. As most of these seeds are not adapted to grow in flooding conditions, palm stems might be regarded as safe sites for seeds (and seedlings) to escape from the seasonal flooding of the Pantanal. 相似文献104.
105.
Julianne H. Grose Kelsey Langston Xiaohui Wang Shayne Squires Soumyajit Banerjee Mustafi Whitney Hayes Jonathan Neubert Susan K. Fischer Matthew Fasano Gina Moore Saunders Qiang Dai Elisabeth Christians E. Douglas Lewandowski Peipei Ping Ivor J. Benjamin 《PloS one》2015,10(10)
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease. 相似文献
106.
Thomas Rademacher Markus Sack Daniel Blessing Rainer Fischer Tanja Holland Johannes Buyel 《Plant biotechnology journal》2019,17(8):1560-1566
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development. 相似文献
107.
Iris Fischer Anne Diévart Gaetan Droc Jean-Fran?ois Dufayard Nathalie Chantret 《Plant physiology》2016,170(3):1595-1610
Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.Receptor-like kinases (RLKs) constitute one of the largest gene families in plants and expanded massively in land plants (Embryophyta; Lehti-Shiu et al., 2009, 2012). For plant RLK gene families, the functions of most members are often not known (especially in recently expanded families), but some described functions include innate immunity (Albert et al., 2010), pathogen response (Dodds and Rathjen, 2010), abiotic stress (Yang et al., 2010), development (De Smet et al., 2009), and sometimes multiple functions (Lehti-Shiu et al., 2012). The RLKs usually consist of three domains: an N-terminal extracellular domain, a transmembrane domain, and a C-terminal kinase domain (KD). In plants, the KD usually has a Ser/Thr specificity (Shiu and Bleecker, 2001), but Tyr-specific RLKs were also described (e.g. BRASSINOSTEROID INSENSITIVE1; Oh et al., 2009). Interestingly, it was estimated that approximately 20% of RLKs contain a catalytically inactive KD (e.g. STRUBBELIG and CORYNE; Chevalier et al., 2005; Castells and Casacuberta, 2007; Gish and Clark, 2011). In Arabidopsis (Arabidopsis thaliana), 44 RLK subgroups (SGs) were defined by inferring the phylogenetic relationships between the KDs (Shiu and Bleecker, 2001). Interestingly, different SGs show different duplication/retention rates (Lehti-Shiu et al., 2009). Specifically, RLKs involved in stress responses show a high number of tandemly duplicated genes whereas those involved in development do not (Shiu et al., 2004), which suggests that some RLK genes are important for the responses of land plants to a changing environment (Lehti-Shiu et al., 2012). There seem to be relatively few RLK pseudogenes compared with other large gene families, and copy retention was argued to be driven by both drift and selection (Zou et al., 2009; Lehti-Shiu et al., 2012). As most SGs are relatively old and RLK subfamilies expanded independently in several plant lineages, duplicate retention cannot be explained by drift alone, and natural selection is expected to be an important driving factor in RLK gene family retention (Lehti-Shiu et al., 2009).Leucine-rich repeat-receptor-like kinases (LRR-RLKs), which contain up to 30 leucine-rich repeat (LRRs) in their extracellular domain, constitute the largest RLK family (Shiu and Bleecker, 2001). Based on the KD, 15 LRR-RLK
SGs have been established in Arabidopsis (Shiu et al., 2004; Lehti-Shiu et al., 2009). So far, two major functions have been attributed to them: defense against pathogens and development (Tang et al., 2010b). LRR-RLKs involved in defense are predominantly found in lineage-specific expanded (LSE) gene clusters, whereas LRR-RLKs involved in development are mostly found in nonexpanded groups (Tang et al., 2010b). It was also discovered that the LRR domains are significantly less conserved than the remaining domains of the LRR-RLK genes (Tang et al., 2010b). In addition, a study of four plant genomes (Arabidopsis, grape [Vitis vinifera], poplar [Populus trichocarpa], and rice [Oryza sativa]) showed that LRR-RLK genes from LSE gene clusters show significantly more indications of positive selection or relaxed constraint than LRR-RLKs from nonexpanded groups (Tang et al., 2010b).The genomes of flowering plants (angiosperms) have been shown to be highly dynamic compared with most other groups of land plants (Leitch and Leitch, 2012). This dynamic is mostly caused by the frequent multiplication of genetic material, followed by a complex pattern of differential losses (i.e. the fragmentation process) and chromosomal rearrangements (Langham et al., 2004; Leitch and Leitch, 2012). Most angiosperm genomes sequenced so far show evidence for at least one whole-genome multiplication event during their evolution (Jaillon et al., 2007; D’Hont et al., 2012; Tomato Genome Consortium, 2012). At a smaller scale, tandem and segmental duplications are also very common in angiosperms (Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project, 2005; Rizzon et al., 2006). Although the most common fate of duplicated genes is to be progressively lost, in some cases they can be retained in the genome, and adaptive as well as nonadaptive scenarios have been discussed to play a role in this preservation process (for review, see Moore and Purugganan, 2005; Hahn, 2009; Innan, 2009; Innan and Kondrashov, 2010). Whole-genome sequences also revealed that the same gene may undergo several rounds of duplication and retention. These LSE genes were shown to evolve under positive selection more frequently than single-copy genes in angiosperms (Fischer et al., 2014). That study analyzed general trends over whole genomes. Here, we ask if, and to what extent, this trend is observable at LRR-RLK genes. As this gene family is very dynamic and large, and in accordance with the results of Tang et al. (2010b), we expect the effect of positive selection to be even more pronounced than in the whole-genome average.We analyzed 33 Embryophyta genomes to investigate the evolutionary history of the LRR-RLK gene family in a phylogenetic framework. Twenty LRR-RLK
SGs were identified, and from this data set, we deciphered the evolutionary dynamics of this family within angiosperms. The expansion/reduction rates were contrasted between SGs and species as well as in ancestral branches of the angiosperm phylogeny. We then focused on genes whose number increased dramatically in an SG- and/or species-specific manner (i.e. LSE genes). Those genes are likely to be involved in species-specific cellular processes or adaptive interactions and were used as a template to infer the potential occurrence of positive selection. This led to the identification of sites at which positive selection likely acted. We discuss our results in the light of angiosperm genome evolution and current knowledge of LRR-RLK functions. Positive selection footprints identified in LSE genes highlight the importance of combining evolutionary analysis and functional knowledge to guide further investigations. 相似文献
108.
G Fischer J G Grohs G Raberger 《Canadian journal of physiology and pharmacology》1990,68(10):1322-1328
Esmolol, a recently developed ultra-short acting beta-adrenoceptor blocking agent, was evaluated in 12 conscious chronically instrumented dogs with intact autonomic reflexes. The significance of its beta 1-adrenoceptor selectivity was examined at various cardiovascular activation levels established by either incremental isoprenaline infusion or graded treadmill exercise. The observed parameters were heart rate, systolic and diastolic arterial blood pressure, left ventricular dp/dtmax, and left ventricular end-diastolic pressure. Intravenous infusion of esmolol (25 and 250 micrograms.kg-1.min-1) led to a dose-dependent reduction of the isoprenaline-induced increase in positive dp/dtmax. The concomitant increase in heart rate was suppressed to a lesser extent. Characteristically of a beta 1-selective agent, esmolol had only a slight effect on the isoprenaline-induced reduction in diastolic blood pressure. The impact of esmolol on exercise-induced hemodynamic activation was much smaller. Exercise-induced increase in positive dp/dtmax was more sensitive to beta-adrenoceptor blockade than the concomitant increase in heart rate. Diastolic blood pressure was not influenced significantly. beta-Adrenoceptor blockade was virtually reversed within 20 min of discontinuation of esmolol infusion. 相似文献
109.
ABSTRACT: BACKGROUND: The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. RESULTS: Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade alpha-cellulose or even complex cell wall preparations under those pretreatment conditions. CONCLUSION: The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications. 相似文献
110.
Adriana Farias Silva Erick Leite Bastos Marcelo Der Torossian Torres André Luis Costa‐da‐Silva Rafaella Sayuri Ioshino Margareth Lara Capurro Flávio Lopes Alves Antonio Miranda Renata de Freitas Fischer Vieira Vani Xavier Oliveira Jr. 《Journal of peptide science》2014,20(8):640-648
Angiotensin II (AII) as well as analog peptides shows antimalarial activity against Plasmodium gallinaceum and Plasmodium falciparum, but the exact mechanism of action is still unknown. This work presents the solid‐phase synthesis and characterization of eight peptides corresponding to the alanine scanning series of AII plus the amide‐capped derivative and the evaluation of the antiplasmodial activity of these peptides against mature P. gallinaceum sporozoites. The Ala screening data indicates that the replacement of either the Ile5 or the His6 residues causes minor effects on the in vitro antiplasmodial activity compared with AII, i.e. AII (88%), [Ala6]‐AII (79%), and [Ala5]‐AII (75%). Analogs [Ala3]‐AII, [Ala1]‐AII, and AII‐NH2 showed antiplasmodial activity around 65%, whereas the activity of the [Ala8]‐AII, [Ala7]‐AII, [Ala4]‐AII, and [Ala2]‐AII analogs is lower than 45%. Circular dichroism data suggest that AII and the most active analogs adopt a β‐fold conformation in different solutions. All AII analogs, except [Ala4]‐AII and [Ala8]‐AII, show contractile responses and interact with the AT1 receptor, [Ala5]‐AII and [Ala6]‐AII. In conclusion, this approach is helpful to understand the contribution of each amino acid residue to the bioactivity of AII, opening new perspectives toward the design of new sporozoiticidal compounds. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献