首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   15篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
51.
Polyandry facilitates postcopulatory inbreeding avoidance in house mice   总被引:2,自引:0,他引:2  
The avoidance of genetic incompatibilities between parental genotypes has been proposed to account for the evolution of polyandry. An extension of this hypothesis suggests polyandry may provide an opportunity for females to avoid the cost of inbreeding by exploiting postcopulatory mechanisms that bias paternity toward unrelated male genotypes. Here we test the inbreeding avoidance hypothesis in house mice by experimentally manipulating genetic compatibility via matings between siblings and nonsiblings. We observed little difference in reproductive success between females mated to two siblings or females mated to two nonsiblings. Females mated to both a sibling and a nonsibling tended to have a lower litter survival, but only when the first male to mate was a sibling. Microsatellite data revealed that paternity was biased toward nonsiblings when a female mated with both a sibling and a nonsibling. Unlike previous studies of invertebrates, paternity bias toward the sibling male was independent of mating sequence. We provide one of the first empirical demonstrations that polyandry facilitates postcopulatory sexual selection in a vertebrate. We discuss this result in relation to the possibility of selective fertilization of ova based on major histocompatibility complex (MHC) haploid expression of sperm.  相似文献   
52.
Type I restriction enzymes bind sequence-specifically to unmodified DNA and subsequently pull the adjacent DNA toward themselves. Cleavage then occurs remotely from the recognition site. The mechanism by which these members of the superfamily 2 (SF2) of helicases translocate DNA is largely unknown. We report the first single-molecule study of DNA translocation by the type I restriction enzyme EcoR124I. Mechanochemical parameters such as the translocation rate and processivity, and their dependence on force and ATP concentration, are presented. We show that the two motor subunits of EcoR124I work independently. By using torsionally constrained DNA molecules, we found that the enzyme tracks along the helical pitch of the DNA molecule. This assay may be directly applicable to investigating the tracking of other DNA-translocating motors along their DNA templates.  相似文献   
53.
Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.  相似文献   
54.
Type I restriction enzymes use two motors to translocate DNA before carrying out DNA cleavage. The motor function is accomplished by amino-acid motifs typical for superfamily 2 helicases, although DNA unwinding is not observed. Using a combination of extensive single-molecule magnetic tweezers and stopped-flow bulk measurements, we fully characterized the (re)initiation of DNA translocation by EcoR124I. We found that the methyltransferase core unit of the enzyme loads the motor subunits onto adjacent DNA by allowing them to bind and initiate translocation. Termination of translocation occurs owing to dissociation of the motors from the core unit. Reinitiation of translocation requires binding of new motors from solution. The identification and quantification of further initiation steps--ATP binding and extrusion of an initial DNA loop--allowed us to deduce a complete kinetic reinitiation scheme. The dissociation/reassociation of motors during translocation allows dynamic control of the restriction process by the availability of motors. Direct evidence that this control mechanism is relevant in vivo is provided.  相似文献   
55.
56.
Drive genes are genetic elements that manipulate the 50% ratio of Mendelian inheritance in their own favour, allowing them to rapidly propagate through populations. The action of drive genes is often hidden, making detection and identification inherently difficult. Yet drive genes can have profound evolutionary consequences for the populations that harbour them: most known drivers are detrimental to organismal gamete development, reproduction and survival. In this study, we identified the presence of a well‐known drive gene called t haplotype post hoc in eight replicate selection lines of house mice that had been evolving under enforced monandry or polyandry for 20 generations. Previous work on these selection lines reported an increase in sperm competitive ability in males evolving under polyandry. Here, we show that this evolutionary response can be partly attributed to gene drive. We demonstrate that drive‐carrying males are substantially compromised in their sperm competitive ability. As a consequence, we found that t frequencies declined significantly in the polyandrous lines while remaining at stable, high levels in the monandrous lines. For the first time in a vertebrate, we thus provide direct experimental evidence that the mating system of a species can have important repercussions on the spread of drive genes over evolutionary relevant timescales. Moreover, our work highlights how the covert action of drive genes can have major, potentially unintended impact on our study systems.  相似文献   
57.
58.
We describe the isolation and characterization of a temperature-sensitive mutation within the hsdS gene of the type I restriction and modification system EcoK. This mutation appears to affect the ability of the HsdR subunit to interact with the HsdS subunit when forming an active endonuclease. We discuss the possibility that this mutant, together with another mutation described previously, may define a discontinuous domain, involved in protein-protein interactions, within the HsdS polypeptide.  相似文献   
59.
We describe the phenomenon of a transient state of R124I restriction deficiency after long-term storage of theE. coli[pCP1005] strain at 4°C, or after growth of the culture in synthetic M9 medium with the nonmutagenic solvent dimethyl sulfoxide. The unusual high reversion from the R+ 124 to the R? 124 phenotype was observed only inE. coli strain transformed with the high-copy number plasmid pCP1005 carryingECoR124IhsdR, M and S genes cloned, but not with strains carrying the natural conjugative plasmid R124. The effect of both treatments on the expression ofEcoR124I phenotype in relation to the possible location of R.EcoR124I restriction endonuclease inE. coli is discussed.  相似文献   
60.
We have screened Thermotoga strains, isolated from hydrothermal vents near the Kuril Islands, for the presence of plasmid DNA. The miniplasmid pMC24 was isolated from the extreme thermophilic eubacteria Thermotoga maritima and sequenced, showing it to be a plasmid of 846 bp. It was found, from a search of the databases, to be closely related to the previously described Thermotoga miniplasmid pRQ7, isolated from a strain found on the Azore Islands, and was distinguished by only two point mutations. These changes resulted in two consecutive frameshifts altering a region encoding 9 amino acids in the Rep-coding region. We have also shown that pMC24, as with pRQ7, is negatively supercoiled. It seems that negatively supercoiled miniplasmids related to pRQ7 are spread worldwide and strongly maintained among Thermotoga strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号