首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   80篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   7篇
  2018年   17篇
  2017年   12篇
  2016年   17篇
  2015年   21篇
  2014年   34篇
  2013年   29篇
  2012年   36篇
  2011年   32篇
  2010年   31篇
  2009年   20篇
  2008年   33篇
  2007年   26篇
  2006年   23篇
  2005年   23篇
  2004年   36篇
  2003年   21篇
  2002年   18篇
  2001年   21篇
  2000年   23篇
  1999年   22篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   6篇
  1990年   14篇
  1989年   8篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   2篇
  1983年   4篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1971年   3篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
31.
The non-receptor tyrosine kinase Abl participates in receptor tyrosine kinase (RTK)-induced actin cytoskeleton remodelling, a signalling pathway in which the function of Rac is pivotal. More importantly, the activity of Rac is indispensable for the leukaemogenic ability of the BCR-Abl oncoprotein. Thus, Rac might function downstream of Abl and be activated by it. Here, we elucidate the molecular mechanisms through which Abl signals to Rac in RTK-activated pathways. We show that Sos-1, a dual guanine nucleotide-exchange factor (GEF), is phosphorylated on tyrosine, after activation of RTKs, in an Abl-dependent manner. Sos-1 and Abl interact in vivo, and Abl-induced tyrosine phosphorylation of Sos-1 is sufficient to elicit its Rac-GEF activity in vitro. Genetic or pharmacological interference with Abl (and the related kinase Arg) resulted in a marked decrease in Rac activation induced by physiological doses of growth factors. Thus, our data identify the molecular connections of a pathway RTKs-Abl-Sos-1-Rac that is involved in signal transduction and actin remodelling.  相似文献   
32.
Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.  相似文献   
33.
In metazoans, CBL proteins are RING finger type ubiquitin-protein isopeptide (E3) ligases involved in the down-regulation of epidermal growth factor tyrosine kinase receptors (EGFR). Among the three CBL proteins described in humans, CBLC (CBL3) remains poorly studied. By screening in parallel a human and a Caenorhabditis elegans library using the two-hybrid procedure in yeast, we found a novel interaction between Hsa-CBLC and Hsa-AIP4 or its C. elegans counterpart Cel-WWP1. Hsa-AIP4 and Cel-WWP1 are also ubiquitin E3 ligases. They contain a HECT (homologous to E6-AP C terminus) catalytic domain and four WW domains known to bind proline-rich regions. We confirmed the interaction between Hsa-CBLC and Hsa-AIP4 by a combination of glutathione S-transferase pull-down, co-immunoprecipitation, and colocalization experiments. We show that these two E3 ligases are involved in EGFR signaling because both become phosphorylated on tyrosine following epidermal growth factor stimulation. In addition, we observed that CBLC increases the ubiquitination of EGFR, and that coexpressing the WW domains of AIP4 exerts a dominant negative effect on EGFR ubiquitination. Finally, coexpressing CBLC and AIP4 induces a down-regulation of EGFR signaling. In conclusion, our data demonstrate that two E3 ligases of different classes can interact and cooperate to down-regulate EGFR signaling.  相似文献   
34.
The Eps15 homology (EH) domain was originally identified as a motif present in three copies at the NH2-termini of Eps15 and of the related molecule Eps15R. Both of these molecules are substrates for the tyrosine kinase activity of the epidermal growth factor receptor and hence the name 'Eps15 homology' or EH domain [Wong et al. (1994) Oncogene 9, 1591-1597; Wong et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9530-9534; Fazioli et al. (1993) Mol. Cell. Biol. 13, 5814-5828] was derived. The motif was subsequently found in several proteins from yeast to nematode, thus establishing its evolutionary conservation. Initial studies with filter-binding assays and phage-displayed libraries demonstrated its protein:protein interaction abilities and identified specific ligands. Subsequently, structural analyses established the molecular bases of recognition between EH domains and cognate peptides. To date, several EH-containing and EH-binding proteins have been identified, which establish in the cell a network of protein:protein interactions, defined as the EH network. This network coordinates cellular functions connected with endocytosis, actin remodeling and intracellular transduction of signals.  相似文献   
35.
Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of L-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype.  相似文献   
36.
Callus induction, somatic embryogenesis and plant regeneration were obtained in lemon [Citrus limon (L.) Burm. cv `Femminello'] and sweet orange [C. sinensis (L.) Osb. cv `Washington Navel GS'] from cultures of stigma and style transverse thin cell layer explants [(t)TCLs]. Explants were cultured on 16 different media, based on the nutrients and vitamins of Murashige and Tucker medium (MT) supplemented with different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N-(2-chloro-4-pyridyl)-N-phenylurea (4-CPPU). Sucrose (146 mM) was used as the sole carbon source. Somatic embryos arose from callus at the surface of stigma and style (t)TCLs 3–5 months after culture initiation of both sweet orange and lemon. The percentages of embryo formation from style (t)TCLs ranged from 0% (the media containing 2,4-D) to 16.0% (the medium supplemented with 4 M 4-CPPU) for C. limon. Better results were obtained when stigma (t)TCLs from C. limon were used; in fact, percentages ranged from 0% on the media containing 2,4-D, with the only exception for the medium supplemented with 0.4 M 2,4-D, to 24.8% on medium with 4 M 4-CPPU. The embryogenic response of lemon (t)TCLs was usually higher than for sweet orange (t)TCLs. After about 3 months, somatic embryos developed into plantlets at high frequencies ranging from 53% to 75% for sweet orange and lemon style derived embryos, respectively.  相似文献   
37.
Biochemical and immunohistochemical evidence is reported, showing basal protein nitration in specific regions of the optic lobes of Sepia officinalis, mainly in the fiber layers of the plexiform zone. SDS-PAGE analysis of optic lobe extracts revealed an intense 3-nitrotyrosine immunoreactive band identified as alpha-tubulin by immunoprecipitation and partial purification. Stimulation of NMDA receptors resulted in a selective decrease in alpha-tubulin levels within 30 min with partial recovery after 4 h. The effect was suppressed by the NO synthase (NOS) inhibitor L-nitroarginine. Incubation of optic lobes with free 3-nitrotyrosine resulted likewise in a selective loss of alpha-tubulin, due apparently to incorporation of the amino acid into the C-terminus of detyrosinated alpha-tubulin to give the nitrated protein purportedly more susceptible to degradation. Overall, these results point to a novel potential physiologic role of NO and free 3-nitrotyrosine in the control of the alpha-tubulin tyrosination/detyrosination cycle and turnover in Sepia nervous tissue.  相似文献   
38.
The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of gamma-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not gamma-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome.  相似文献   
39.
Signaling from Ras to Rac and beyond: not just a matter of GEFs   总被引:20,自引:0,他引:20       下载免费PDF全文
Members of a family of intracellular molecular switches, the small GTPases, sense modifications of the extracellular environment and transduce them into a variety of homeostatic signals. Among small GTPases, Ras and the Rho family of proteins hierarchically and/or coordinately regulate signaling pathways leading to phenotypes as important as proliferation, differentiation and apoptosis. Ras and Rho-GTPases are organized in a complex network of functional interactions, whose molecular mechanisms are being elucidated. Starting from the simple concept of linear cascades of events (GTPase-->activator--> GTPase), the work of several laboratories is uncovering an increasingly complex scenario in which upstream regulators of GTPases also function as downstream effectors and influence the precise biological outcome. Furthermore, small GTPases assemble into macromolecular machineries that include upstream activators, downstream effectors, regulators and perhaps even final biochemical targets. We are starting to understand how these macromolecular complexes work and how they are regulated and targeted to their proper subcellular localization. Ultimately, the acquisition of a cogent picture of the various levels of integration and regulation in small GTPase-mediated signaling should define the physiology of early signal transduction events and the pathological implication of its subversion.  相似文献   
40.
Eps15 and Eps15R are related tyrosine kinase substrates, which have been implicated in endocytosis and synaptic vesicle recycling. Through the protein:protein interaction abilities of their EH domains, they establish a complex network of interactions with several proteins, including Numb, a protein necessary for neuronal cell fate specification. We analyzed the expression of Eps15 and Eps15R during murine development, at the time of active neurogenesis. The most striking difference was at the level of subcellular localization, with Eps15 present in the cytosol and on the plasma membrane, while Eps15R exhibited mainly a nuclear localization. Interesting topographical differences also emerged. In the 12.5 days post coitum neuroepithelium, Eps15 was expressed in the ventricular zone, which contains proliferating neuroblasts, whereas Eps15R was found only in postmitotic neurons. Conversely, both proteins were expressed in sensory and cranial ganglia. At later times, the expression of Eps15 and Eps15R was widely maintained in neuronal structures. In other tissues, Eps15 was first seen in the liver primordium and at low levels in choroid plexus, lung, kidney and intestine; later on the expression was maintained at high levels in epithelia. Nuclear staining of Eps15R was present in kidney, intestine, lung and liver, as well as in heart and pancreas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号