首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   93篇
  706篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   8篇
  2018年   16篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   31篇
  2013年   24篇
  2012年   34篇
  2011年   32篇
  2010年   30篇
  2009年   23篇
  2008年   31篇
  2007年   22篇
  2006年   21篇
  2005年   21篇
  2004年   34篇
  2003年   21篇
  2002年   17篇
  2001年   23篇
  2000年   22篇
  1999年   27篇
  1998年   14篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   12篇
  1990年   19篇
  1989年   10篇
  1988年   8篇
  1987年   12篇
  1986年   13篇
  1985年   6篇
  1983年   6篇
  1982年   3篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1971年   4篇
  1967年   3篇
排序方式: 共有706条查询结果,搜索用时 0 毫秒
11.
Signaling from Ras to Rac and beyond: not just a matter of GEFs   总被引:20,自引:0,他引:20       下载免费PDF全文
Members of a family of intracellular molecular switches, the small GTPases, sense modifications of the extracellular environment and transduce them into a variety of homeostatic signals. Among small GTPases, Ras and the Rho family of proteins hierarchically and/or coordinately regulate signaling pathways leading to phenotypes as important as proliferation, differentiation and apoptosis. Ras and Rho-GTPases are organized in a complex network of functional interactions, whose molecular mechanisms are being elucidated. Starting from the simple concept of linear cascades of events (GTPase-->activator--> GTPase), the work of several laboratories is uncovering an increasingly complex scenario in which upstream regulators of GTPases also function as downstream effectors and influence the precise biological outcome. Furthermore, small GTPases assemble into macromolecular machineries that include upstream activators, downstream effectors, regulators and perhaps even final biochemical targets. We are starting to understand how these macromolecular complexes work and how they are regulated and targeted to their proper subcellular localization. Ultimately, the acquisition of a cogent picture of the various levels of integration and regulation in small GTPase-mediated signaling should define the physiology of early signal transduction events and the pathological implication of its subversion.  相似文献   
12.
13.
14.
15.
16.
Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.  相似文献   
17.
18.
Excitatory amino acids (EAAs) are found present in the nervous and reproductive systems of animals. Numerous studies have demonstrated a regulatory role for Glutamate (Glu), d -aspartate ( d -Asp) and N-methyl- d -aspartate (NMDA) in the control of spermatogenesis. EAAs are able to stimulate the Glutamate receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Here in, we assess expression of the main AMPAR subunits, GluA1 and GluA2/3, in the mouse testis and in spermatogonial GC-1 cells. The results showed that both GluA1 and GluA2/3 were localized in mouse testis prevalently in spermatogonia. The subunit GluA2/3 was more highly expressed compared with GluA1 in both the testis and the GC-1 cells. Subsequently, GC-1 cells were incubated with medium containing l -Glu, d -Glu, d -Asp or NMDA to determine GluA1 and GluA2/3 expressions. At 30 minutes and 2 hours of incubation, EAA-treated GC-1 cells showed significantly higher expression levels of both GluA1 and GluA2/3. Furthermore, p-extracellular signal-regulated kinase (ERK), p-Akt, proliferating cell nuclear antigen (PCNA), and Aurora B expressions were assayed in l -Glu-, d -Glu-, and NMDA-treated GC-1 cells. At 30 minutes and 2 hours of incubation, treated GC-1 cells showed significantly higher expression levels of p-ERK and p-Akt. A consequent increase of PCNA and Aurora B expressions was induced by l -Glu and NMDA, but not by d -Glu. Our study demonstrates a direct effect of the EAAs on spermatogonial activity. In addition, the increased protein expression levels of GluA1 and GluA2/3 in EAA-treated GC-1 cells suggest that EAAs could activate ERK and Akt pathways through the AMPAR. Finally, the increased PCNA and Aurora B levels may imply an enhanced proliferative activity.  相似文献   
19.
The dissection of the molecular circuitries at the base of cell life and the identification of their abnormal transformation during carcinogenesis rely on the characterization of biological phenotypes generated by targeted overexpression or deletion of gene products through genetic manipulation. Fluorescence microscopy provides a wide variety of tools to monitor cell life with minimal perturbations. The observation of living cells requires the selection of a correct balance between temporal, spatial and “statistical” resolution according to the process to be analyzed. In the following paper ad hoc developed optical tools for dynamical tracking from cellular to molecular resolution will be presented. Particular emphasis will be devoted to discuss how to exploit light–matter interaction to selectively target specific molecular species, understanding the relationships between their intracellular compartmentalization and function.  相似文献   
20.
Nitric oxide (NO) involvement in intestinal ischemia-reperfusion (I/R) injury has been widely suggested but its protective or detrimental role remains still question of debate. Here, we examine the impact of supplementation or inhibition of NO availability on intestinal dysmotility and inflammation caused by mesenteric I/R in mice. Ischemia 45min and reperfusion 24h were performed by superior mesenteric artery occlusion in female Swiss mice. Saline-treated sham-operated (S) or normal mice without surgery (N) served as controls. Drugs were subcutaneously injected 0, 4, 8, and 18 h after ischemia. Upper gastrointestinal transit (GIT, estimated through black marker gavage), intestinal myeloperoxidase activity (MPO), intestinal malondialdehyde levels (MDA), Evans blue extravasation (EB), intestinal histological damage, and mean arterial pressure (MAP) were considered. In I/R mice, GIT was significantly delayed compared to S and N groups; MPO activity and EB extravasation enhanced, whereas MDA levels did not change. Compared to N and S groups, in I/R mice selective iNOS inhibitor P-BIT significantly prevented motor, MPO and EB changes; putative iNOS inhibitor aminoguanidine significantly counteracted GIT delay but not neutrophil recruitment and the increase in vascular permeability; NOS inhibitor l-NAME and NO precursor l-arginine were scarcely or no effective. Furthermore, in S mice aminoguanidine caused a significant increase of MPO activity reverted by H(1) histamine receptor antagonist pre-treatment. Unlike P-BIT, aminoguanidine and l-NAME injection increased MAP. These findings confirm a detrimental role for iNOS-derived NO overproduction during reperfusion. Aminoguanidine-associated neutrophil recruitment suggests that this drug could act through mechanisms additional to iNOS inhibition involving both eNOS blockade, as indicated by its hemodynamic effects, and indirect activation of H(1) histamine receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号