首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2347篇
  免费   157篇
  国内免费   1篇
  2505篇
  2023年   6篇
  2022年   38篇
  2021年   64篇
  2020年   31篇
  2019年   40篇
  2018年   52篇
  2017年   37篇
  2016年   61篇
  2015年   113篇
  2014年   110篇
  2013年   146篇
  2012年   178篇
  2011年   183篇
  2010年   136篇
  2009年   112篇
  2008年   172篇
  2007年   149篇
  2006年   147篇
  2005年   151篇
  2004年   107篇
  2003年   118篇
  2002年   102篇
  2001年   21篇
  2000年   21篇
  1999年   23篇
  1998年   32篇
  1997年   15篇
  1996年   17篇
  1995年   9篇
  1994年   14篇
  1993年   12篇
  1992年   11篇
  1991年   3篇
  1990年   12篇
  1989年   4篇
  1988年   11篇
  1987年   9篇
  1986年   3篇
  1985年   3篇
  1984年   9篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1978年   4篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1963年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有2505条查询结果,搜索用时 15 毫秒
71.
Although ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase (1α-OHase) has been recognized for many years, the precise function of this enzyme outside the kidney remains open to debate. Three specific aspects of extra-renal 1α-OHase have attracted most attention: (i) expression and regulation in non-classical tissues during normal physiology; (ii) effects on the immune system and inflammatory disease; (iii) expression and function in tumors. The most well-recognized manifestation of extra-renal 1α-OHase activity remains that found in some patients with granulomatous diseases where locally synthesized 1α,25(OH)2D3 has the potential to spill-over into the general circulation. However, immunohistochemistry and mRNA analyses suggest that 1α-OHase is also expressed by a variety of normal human tissues including the gastrointestinal tract, skin, vasculature and placenta. This has promoted the idea that autocrine/paracrine synthesis of 1,25(OH)2D3 contributes to normal physiology, particularly in mediating the potent effects of vitamin D on innate (macrophage) and acquired (dendritic cell) immunity. We have assessed the capacity for synthesis of 1,25(OH)2D3 in these cells and the functional significance of autocrine responses to 1α-hydroxylase. Data suggest that local synthesis of 1,25(OH)2D3 may be a preferred mode of response to antigenic challenge in many tissues.  相似文献   
72.
Macrophage-CSF (M-CSF) is critical for osteoclast (OC) differentiation and is reported to enhance mature OC survival and motility. However, its role in the regulation of bone resorption, the main function of OCs, has not been well characterised. To address this we analysed short-term cultures of fully differentiated OCs derived from human colony forming unit-granulocyte macrophages (CFU-GM). When cultured on dentine, OC survival was enhanced by M-CSF but more effectively by receptor activator of NFκB ligand (RANKL). Resorption was entirely dependent on the presence of RANKL. Co-treatment with M-CSF augmented RANKL-induced resorption in a concentration-dependent manner with a (200-300%) stimulation at 25 ng/mL, an effect observed within 4-6 h. M-CSF co-treatment also increased number of resorption pits and F-actin sealing zones, but not the number of OCs or pit size, indicating stimulation of the proportion of OCs activated. M-CSF facilitated RANKL-induced activation of c-fos and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but not NFκB nor nuclear factor of activated T-cells, cytoplasmic-1 (NFATc1). The mitogen-activated protein kinase kinase (MEK) 1 inhibitor PD98059 partially blocked augmentation of resorption by M-CSF. Our results reveal a previously unidentified role of M-CSF as a potent stimulator of mature OC resorbing activity, possibly mediated via ERK upstream of c-fos.  相似文献   
73.
Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species‐specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top‐down effects, particularly in plant–herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat‐forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early‐life stages such as seedlings. Yet, these early‐life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant‐herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the major mechanisms that will drive the capacity of seagrass seedlings to adapt and survive to warming, highlighting the potential additive effects that herbivory will have on ultimately determining seedling success.  相似文献   
74.
Simian immunodeficiency virus of chimpanzees (SIVcpz) has a significant negative impact on the health, reproduction, and life span of chimpanzees, yet the prevalence and distribution of this virus in wild-living populations are still only poorly understood. Here, we show that savanna chimpanzees, who live in ecologically marginal habitats at 10- to 50-fold lower population densities than forest chimpanzees, can be infected with SIVcpz at high prevalence rates. Fecal samples were collected from nonhabituated eastern chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley (n = 375) and Shangwa River (n = 6) areas of the Masito-Ugalla region in western Tanzania, genotyped to determine the number of sampled individuals, and tested for SIVcpz-specific antibodies and nucleic acids. None of 5 Shangwa River apes tested positive for SIVcpz; however, 21 of 67 Issa Valley chimpanzees were SIVcpz infected, indicating a prevalence rate of 31% (95% confidence interval, 21% to 44%). Two individuals became infected during the 14-month observation period, documenting continuing virus spread in this community. To characterize the newly identified SIVcpz strains, partial and full-length viral sequences were amplified from fecal RNA of 10 infected chimpanzees. Phylogenetic analyses showed that the Ugalla viruses formed a monophyletic lineage most closely related to viruses endemic in Gombe National Park, also located in Tanzania, indicating a connection between these now separated communities at some time in the past. These findings document that SIVcpz is more widespread in Tanzania than previously thought and that even very low-density chimpanzee populations can be infected with SIVcpz at high prevalence rates. Determining whether savanna chimpanzees, who face much more extreme environmental conditions than forest chimpanzees, are more susceptible to SIVcpz-associated morbidity and mortality will have important scientific and conservation implications.  相似文献   
75.
76.
Soils are typically considered to be suboptimal environments for enteric organisms, but there is increasing evidence that Escherichia coli populations can become resident in soil under favorable conditions. Previous work reported the growth of autochthonous E. coli in a maritime temperate Luvic Stagnosol soil, and this study aimed to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached from the soil. Molecular analysis (16S rRNA sequencing, enterobacterial repetitive intergenic consensus PCR, pulsed-field gel electrophoresis, and a multiplex PCR method) established the genetic diversity of the isolates (n = 7), while physiological methods determined the metabolic capability and environmental fitness of the isolates, relative to those of laboratory strains, under the conditions tested. Genotypic analysis indicated that the leached isolates do not form a single genetic grouping but that multiple genotypic groups are capable of surviving and proliferating in this environment. In physiological studies, environmental isolates grew well across a broad range of temperatures and media, in comparison with the growth of laboratory strains. These findings suggest that certain E. coli strains may have the ability to colonize and adapt to soil conditions. The resulting lack of fecal specificity has implications for the use of E. coli as an indicator of fecal pollution in the environment.Escherichia coli is a well-established indicator of fecal contamination in the environment. The organism''s validity as an indicator of water pollution is dependent, among other factors, on its fecal specificity and its inability to multiply outside the primary host, the gastrointestinal tracts of humans and warm-blooded animals (9). While many pathogens and indicator organisms are considered to be poorly adapted for long-term survival, or proliferation, outside their primary hosts (24), there is increasing evidence that this view needs to be reconsidered with respect to E. coli (17, 38). In particular, questions remain about its fate and survival capacity in environmental matrices, such as soil. While the habitat within the primary host is characterized by constant warm temperature conditions and a ready availability of nutrients and carbon, that of soil is often characterized by oligotrophic and highly dynamic conditions, temperature and pH variation, predatory populations, and competition with environmentally adapted indigenous microflora (39). Soils are thus typically considered to be suboptimal environments for enteric organisms, and growth is thought to be negligible, with die-off of organisms at rates reported to be a function of the interaction of numerous factors, including the type and physiological state of the microorganism, the physical, chemical, and biological properties of the soil, atmospheric conditions (including sunlight, moisture, and temperature), and organism application method (10).In recent years, the growth of E. coli in soils, sediments, and water in tropical and subtropical regions has been widely documented, and the organism is considered to be an established part of the soil biota within these regions (4, 5, 7, 12, 14, 19, 25, 32). The integration of E. coli as a component of the indigenous microflora in soils of tropical and subtropical regions may be attributable to the nutrient-rich nature and warm temperatures of these habitats (21, 39), combined with the metabolic versatility of the organism and its simple nutritional requirements (21). In addition to tropical and subtropical regions, the presence of autochthonous E. coli populations in the cooler soils of temperate and northern temperate regions has also been reported (6, 20, 22, 37), with one report on an alpine soil (34) and, most recently, a report on a maritime temperate grassland soil (3). The growth of E. coli within soils can act as a reservoir for the further contamination of bodies of water (20, 31, 32), compromising the indicator status of E. coli within these regions. As such, an understanding of the ecological characteristics of E. coli in soil is critical to its validation as an indicator organism. With respect to the input of pathogenic E. coli into the environment, this knowledge becomes essential for assessing the potential health risk to human and animal hosts from agricultural activities such as landspreading of manures and slurries (24).It has been suggested that E. coli can sustain autochthonous populations within soils in temperate regions, wherever favorable conditions exist (21). The phenotypic traits of the organism (including its metabolic diversity and its ability to grow both aerobically and anaerobically in a broad temperature range) may assist the persistence, colonization, and growth of E. coli when conditions permit. The challenging nature of the soil environment and the disparity of conditions between the primary host and the secondary habitat raises the question of how these E. coli populations survive and compete for niche space among the highly competitive and diverse coexisting populations of the indigenous microflora (15, 21). There is some evidence that naturalized E. coli may form genetically distinct populations in the environment (17, 20, 34, 36). This suggests that autochthonous E. coli populations in soil may have increased environmental fitness, facilitating their residence in soil (20, 34, 38). Little is known, however, of the physiology of these organisms, and their capacity for survival in soil remains poorly understood (21).Previous work (3) recorded continuous low-level leaching of viable E. coli from lysimeters of a poorly drained Luvic Stagnosol soil type, more than 9 years after the last application of fecal material. This finding was indicative of the growth of E. coli within the soil and suggested the presence of autochthonous E. coli populations within the soil that could be leached subsequently. To our knowledge, prior to this report, naturalized autochthonous E. coli populations persisting under the relatively oligotrophic, low-temperature conditions of maritime temperate soil environments had not been described previously. Growth within this soil was attributed chiefly to favorable characteristics of the soil, which include high clay and moisture contents, nutrient retention, and the presence of anaerobic zones. The objective of this work was to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached. In particular, we were interested in determining if the isolates possessed phenotypic characteristics that may enhance their capacity to survive and occupy niche space within the soil. This study tested the hypothesis that E. coli clones persisting in lysimeters of this soil form a genetically distinct grouping and possess a physiology tailored to the soil environment.  相似文献   
77.
We investigated the impact of inflammatory signaling in airway epithelial cells on host defense against Pseudomonas aeruginosa, a major cause of nosocomial pneumonia. In mice, airway instillation of P. aeruginosa resulted in NF-kappaB activation in the lungs that was primarily localized to the bronchial epithelium at 4 h, but was present in a variety of cell types by 24 h. We modulated NF-kappaB activity in airway epithelium by intratracheal delivery of adenoviral vectors expressing RelA (AdRelA) or a dominant inhibitor of NF-kappaB before P. aeruginosa infection. Bacterial clearance was enhanced by up-regulation of NF-kappaB activity following AdRelA administration and was impaired by treatment with a dominant inhibitor of NF-kappaB. The TNF-alpha concentration in lung lavage was increased by AdRelA treatment and beneficial effects of NF-kappaB up-regulation were abrogated in TNF-alpha-deficient mice. In contrast, NF-kappaB inhibition reduced MIP-2 expression and neutrophil influx following P. aeruginosa infection. Therefore, inflammatory signaling through the NF-kappaB pathway in airway epithelial cells critically regulates the innate immune response to P. aeruginosa.  相似文献   
78.
Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface "sheddase," but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase). We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite.  相似文献   
79.
Adenosine is formed during conditions that deplete ATP, such as ischemia. Adenosine deaminase converts adenosine into inosine, and both adenosine and inosine can be beneficial for postischemic recovery. This study investigated adenosine and inosine release from astrocytes and neurons during chemical hypoxia or oxygen-glucose deprivation. In both cell types, 2-deoxyglucose was the most effective stimulus for depleting cellular ATP and for evoking inosine release; in contrast, oxygen-glucose deprivation evoked the greatest adenosine release. alpha,beta-Methylene ADP, an inhibitor of ecto-5'nucleotidase, significantly reduced adenosine release from astrocytes but not neurons. Dipyridamole, an inhibitor of equilibrative nucleoside transporters, inhibited both adenosine and inosine release from neurons. Erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase, reduced neuronal inosine release evoked by oxygen-glucose deprivation but not by 2-deoxyglucose treatment. These data indicate that (1). astrocytes release adenine nucleotides that are hydrolyzed extracellularly to adenosine, whereas neurons release adenosine per se, (2). inosine is formed intracellularly and released via nucleoside transporters, and (3). inosine is formed by an adenosine deaminase-dependent pathway during oxygen-glucose deprivation but not during 2-deoxyglucose treatment. In summary, the metabolic pathways for adenosine formation and release were cell-type dependent whereas the pathways for inosine formation were stimulus dependent.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号