首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7295篇
  免费   716篇
  国内免费   1篇
  8012篇
  2022年   79篇
  2021年   136篇
  2020年   77篇
  2019年   88篇
  2018年   111篇
  2017年   103篇
  2016年   173篇
  2015年   283篇
  2014年   285篇
  2013年   409篇
  2012年   450篇
  2011年   495篇
  2010年   332篇
  2009年   279篇
  2008年   411篇
  2007年   375篇
  2006年   356篇
  2005年   345篇
  2004年   302篇
  2003年   300篇
  2002年   297篇
  2001年   133篇
  2000年   123篇
  1999年   135篇
  1998年   91篇
  1997年   64篇
  1996年   83篇
  1995年   63篇
  1994年   71篇
  1993年   72篇
  1992年   74篇
  1991年   56篇
  1990年   82篇
  1989年   91篇
  1988年   65篇
  1987年   50篇
  1986年   49篇
  1985年   52篇
  1984年   59篇
  1983年   44篇
  1982年   51篇
  1981年   42篇
  1980年   40篇
  1979年   49篇
  1978年   37篇
  1977年   36篇
  1976年   51篇
  1975年   33篇
  1974年   53篇
  1973年   43篇
排序方式: 共有8012条查询结果,搜索用时 15 毫秒
991.
The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK.  相似文献   
992.
Methionine aminopeptidase (MAP) (E.C. 3.4.11.18) is a metallopeptidase that cleaves the N-terminal methionine (Met) residue from some proteins. MAP is essential for growth of several bacterial pathogens, making it a target for antibacterial drug discovery. MAP enzymes are also present in eukaryotic cells, and one is a target for antiangiogenic cancer therapy. To screen large compound libraries for MAP inhibitors as the starting point for drug discovery, a high-throughput-compatible assay is valuable. Here the authors describe a novel assay, which detects the Met product of MAP-catalyzed peptide cleavage by coupling it to adenosine triphosphate (ATP)-dependent production of S-adenosyl-L-methionine (SAM) and inorganic phosphate (P(i)) by SAM synthetase (MetK) combined with inorganic pyrophosphatase. The three P(i) ions produced for each Met consumed are detected using Malachite Green/molybdate reagent. This assay can use any unmodified peptide MAP substrate with an N-terminal Met. The assay was used to measure kinetic constants for Escherichia coli MAP using Mn(2+) as the activator and the peptide Met-Gly-Met-Met as the substrate, as well as to measure the potency of a MAP inhibitor. A Mn(2+) buffer is described that can be used to prevent free Mn(2+) depletion by chelating compounds from interfering in screens for MAP inhibitors.  相似文献   
993.
994.

Background

Although obstructive sleep apnea (OSA) is more common in patients with kidney disease, whether nocturnal hypoxia affects kidney function is unknown.

Methods

We studied all adult subjects referred for diagnostic testing of sleep apnea between July 2005 and December 31 2007 who had serial measurement of their kidney function. Nocturnal hypoxia was defined as oxygen saturation (SaO2) below 90% for ≥12% of the nocturnal monitoring time. The primary outcome, accelerated loss of kidney function, was defined as a decline in estimated glomerular filtration rate (eGFR) ≥4 ml/min/1.73 m2 per year.

Results

858 participants were included and followed for a mean study period of 2.1 years. Overall 374 (44%) had nocturnal hypoxia, and 49 (5.7%) had accelerated loss of kidney function. Compared to controls without hypoxia, patients with nocturnal hypoxia had a significant increase in the adjusted risk of accelerated kidney function loss (odds ratio (OR) 2.89, 95% confidence interval [CI] 1.25, 6.67).

Conclusion

Nocturnal hypoxia was independently associated with an increased risk of accelerated kidney function loss. Further studies are required to determine whether treatment and correction of nocturnal hypoxia reduces loss of kidney function.  相似文献   
995.

Background and Objectives

In the last decade, autosomal recessive IL-12Rβ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12Rβ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common.

Methods and Principal Findings

We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12Rβ1 deficiency. Despite the small sample studied, our findings suggest that IL-12Rβ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease.

Significance

This finding may have important medical implications, as recombinant IFN-γ is an effective treatment for mycobacterial infections in IL-12Rβ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity.  相似文献   
996.
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.  相似文献   
997.

Background

Tuberous sclerosis (TSC) related tumors are characterized by constitutively activated mTOR signaling due to mutations in TSC1 or TSC2.

Methods

We completed a phase 2 multicenter trial to evaluate the efficacy and tolerability of the mTOR inhibitor, sirolimus, for the treatment of kidney angiomyolipomas.

Results

36 adults with TSC or TSC/LAM were enrolled and started on daily sirolimus. The overall response rate was 44.4% (95% confidence intervals [CI] 28 to 61); 16/36 had a partial response. The remainder had stable disease (47.2%, 17/36), or were unevaluable (8.3%, 3/36). The mean decrease in kidney tumor size (sum of the longest diameters [sum LD]) was 29.9% (95% CI, 22 to 37; n = 28 at week 52). Drug related grade 1–2 toxicities that occurred with a frequency of >20% included: stomatitis, hypertriglyceridemia, hypercholesterolemia, bone marrow suppression (anemia, mild neutropenia, leucopenia), proteinuria, and joint pain. There were three drug related grade 3 events: lymphopenia, headache, weight gain. Kidney angiomyolipomas regrew when sirolimus was discontinued but responses tended to persist if treatment was continued after week 52. We observed regression of brain tumors (SEGAs) in 7/11 cases (26% mean decrease in diameter), regression of liver angiomyolipomas in 4/5 cases (32.1% mean decrease in longest diameter), subjective improvement in facial angiofibromas in 57%, and stable lung function in women with TSC/LAM (n = 15). A correlative biomarker study showed that serum VEGF-D levels are elevated at baseline, decrease with sirolimus treatment, and correlate with kidney angiomyolipoma size (Spearman correlation coefficient 0.54, p = 0.001, at baseline).

Conclusions

Sirolimus treatment for 52 weeks induced regression of kidney angiomyolipomas, SEGAs, and liver angiomyolipomas. Serum VEGF-D may be a useful biomarker for monitoring kidney angiomyolipoma size. Future studies are needed to determine benefits and risks of longer duration treatment in adults and children with TSC.

Trial Registration

Clinicaltrials.gov NCT00126672  相似文献   
998.
999.
LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the complete absence of the major splice variant in testis (LKB1(S)), are completely infertile. We sought to further characterise these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype. We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids. Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for male fertility.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号