首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1094篇
  免费   106篇
  1200篇
  2023年   9篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   15篇
  2017年   7篇
  2016年   27篇
  2015年   39篇
  2014年   37篇
  2013年   53篇
  2012年   59篇
  2011年   77篇
  2010年   40篇
  2009年   38篇
  2008年   52篇
  2007年   57篇
  2006年   39篇
  2005年   51篇
  2004年   49篇
  2003年   38篇
  2002年   38篇
  2001年   26篇
  2000年   9篇
  1999年   21篇
  1998年   16篇
  1997年   17篇
  1996年   14篇
  1995年   13篇
  1992年   16篇
  1991年   15篇
  1990年   6篇
  1989年   15篇
  1988年   19篇
  1987年   19篇
  1985年   12篇
  1984年   11篇
  1983年   13篇
  1982年   8篇
  1981年   7篇
  1979年   10篇
  1978年   17篇
  1977年   8篇
  1975年   16篇
  1974年   13篇
  1973年   12篇
  1972年   14篇
  1971年   16篇
  1969年   9篇
  1966年   8篇
排序方式: 共有1200条查询结果,搜索用时 9 毫秒
31.
We have constructed a replication-competent gammaretrovirus (SL3-AP) capable of using the human G-protein-coupled receptor hAPJ as its entry receptor. The envelope protein of the virus was made by insertion of the 13-amino-acid peptide ligand for hAPJ, flanked by linker sequences, into one of the variable loops of the receptor binding domain of SL3-2, a murine leukemia virus (MLV) that uses the xenotropic-polytropic virus receptor Xpr1 and which has a host range limited to murine cells. This envelope protein can utilize hAPJ as well as murine Xpr1 for entry into host cells with equal efficiencies. In addition, the SL3-AP virus replicates in cells expressing either of its receptors, hAPJ and murine Xpr1, and causes resistance to superinfection and downregulation of hAPJ in infected cells. Thus, SL3-AP is the first example of a retargeted replication-competent retrovirus, with replication characteristics and receptor interference properties similar to those of natural isolates.  相似文献   
32.
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self‐sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental‐scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four‐species grass–legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2‐fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one‐third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one‐third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass–legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass–legume mixtures can substantially contribute to resource‐efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.  相似文献   
33.
34.
Proteins homologous to the protein NPS (neck passage structure) are widespread among lactococcal phages. We investigated the hypothesis that NPS is involved in the infection of phage TP901-1 by analysis of an NPS- mutant. NPS was determined to form a collar-whisker complex but was shown to be nonessential for infection, phage assembly, and stability.  相似文献   
35.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
36.
Non-viral vectors are promising vehicles for gene therapy but delivery of plasmid DNA to post-mitotic cells is challenging as nuclear entry is particularly inefficient. We have developed and evaluated a hybrid mRNA/DNA system designed to bypass the nuclear barrier to transfection and facilitate cytoplasmic gene expression. This system, based on co-delivery of mRNA(A64) encoding for T7 RNA polymerase (T7 RNAP) with a T7-driven plasmid, produced between 10- and 2200-fold higher gene expression in primary dorsal root ganglion neuronal (DRGN) cultures isolated from Sprague–Dawley rats compared to a cytomegalovirus (CMV)-driven plasmid, and 30-fold greater expression than the enhanced T7-based autogene plasmid pR011. Cell-free assays and in vitro transfections highlighted the versatility of this system with small quantities of T7 RNAP mRNA required to mediate expression at levels that were significantly greater than with the T7-driven plasmid alone or supplemented with T7 RNAP protein. We have also characterized a number of parameters, such as mRNA structure, intracellular stability and persistence of each nucleic acid component that represent important factors in determining the transfection efficiency of this hybrid expression system. The results from this study demonstrate that co-delivery of mRNA is a promising strategy to yield increased expression with plasmid DNA, and represents an important step towards improving the capability of non-viral vectors to mediate efficient gene transfer in cell types, such as in DRGN, where the nuclear membrane is a significant barrier to transfection.  相似文献   
37.
During recent years, the composition of the gut microbiota (GM) has received increasing attention as a factor in the development of experimental inflammatory disease in animal models. Because increased variation in the GM might lead to increased variation in disease parameters, determining and reducing GM variation between laboratory animals may provide more consistent models. Both genetic and environmental aspects influence the composition of the GM and may vary between laboratory animal breeding centers and within an individual breeding center. This study investigated the variation in cecal microbiota in 8-wk-old NMRI and C57BL/6 mice by using denaturing gradient gel electrophoresis to profile PCR-derived amplicons from bacterial 16S rRNA genes. Comparison of the cecal microbiotas revealed that the similarity index of the inbred C57BL/6Sca strain was 10% higher than that of the outbred Sca:NMRI stock. Comparing C57BL/6 mice from 2 vendors revealed significant differences in the microbial profile, whereas the profiles of C57BL/6Sca mice raised in separate rooms within the same breeding center were not significantly different. Furthermore, housing in individually ventilated cages did not lead to intercage variation. These results show that denaturing gradient gel electrophoresis is a simple tool that can be used to characterize the gut microbiota of mice. Including such characterizations in future quality-control programs may increase the reproducibility of mouse studies.  相似文献   
38.
Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented.  相似文献   
39.
Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait–preference genetic covariance). We review the literature on trait–preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait–preference covariance. Trait–preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号