首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   106篇
  2023年   8篇
  2022年   7篇
  2021年   16篇
  2020年   11篇
  2019年   13篇
  2018年   15篇
  2017年   7篇
  2016年   27篇
  2015年   39篇
  2014年   37篇
  2013年   54篇
  2012年   60篇
  2011年   77篇
  2010年   40篇
  2009年   38篇
  2008年   52篇
  2007年   57篇
  2006年   39篇
  2005年   51篇
  2004年   49篇
  2003年   39篇
  2002年   38篇
  2001年   26篇
  2000年   9篇
  1999年   21篇
  1998年   16篇
  1997年   17篇
  1996年   14篇
  1995年   13篇
  1992年   14篇
  1991年   15篇
  1990年   6篇
  1989年   15篇
  1988年   19篇
  1987年   19篇
  1985年   16篇
  1984年   11篇
  1983年   13篇
  1982年   8篇
  1981年   6篇
  1979年   10篇
  1978年   16篇
  1977年   7篇
  1975年   16篇
  1974年   14篇
  1973年   12篇
  1972年   16篇
  1971年   16篇
  1969年   10篇
  1966年   9篇
排序方式: 共有1206条查询结果,搜索用时 15 毫秒
111.
ProServer: a simple, extensible Perl DAS server   总被引:1,自引:0,他引:1  
SUMMARY: The increasing size and complexity of biological databases has led to a growing trend to federate rather than duplicate them. In order to share data between federated databases, protocols for the exchange mechanism must be developed. One such data exchange protocol that is widely used is the Distributed Annotation System (DAS). For example, DAS has enabled small experimental groups to integrate their data into the Ensembl genome browser. We have developed ProServer, a simple, lightweight, Perl-based DAS server that does not depend on a separate HTTP server. The ProServer package is easily extensible, allowing data to be served from almost any underlying data model. Recent additions to the DAS protocol have enabled both structure and alignment (sequence and structural) data to be exchanged. ProServer allows both of these data types to be served. AVAILABILITY: ProServer can be downloaded from http://www.sanger.ac.uk/proserver/ or CPAN http://search.cpan.org/~rpettett/. Details on the system requirements and installation of ProServer can be found at http://www.sanger.ac.uk/proserver/.  相似文献   
112.
Predicting active site residue annotations in the Pfam database   总被引:1,自引:0,他引:1  

Background

The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.

Results

This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.

Conclusion

Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.  相似文献   
113.
In response to a joint call from US’s NSF and UK’s EPSRC for applications that aim to utilize the combined computational resources of the US and UK, three computational science groups from UCL, Tufts and Brown Universities teamed up with a middleware team from NIU/Argonne to meet the challenge. Although the groups had three distinct codes and aims, the projects had the underlying common feature that they were comprised of large-scale distributed applications which required high-end networking and advanced middleware in order to be effectively deployed. For example, cross-site runs were found to be a very effective strategy to overcome the limitations of a single resource. The seamless federation of a grid-of-grids remains difficult. Even if interoperability at the middleware and software stack levels were to exist, it would not guarantee that the federated grids can be utilized for large scale distributed applications. There are important additional requirements for example, compatible and consistent usage policy, automated advanced reservations and most important of all co-scheduling. This paper outlines the scientific motivation and describes why distributed resources are critical for all three projects. It documents the challenges encountered in using a grid-of-grids and some of the solutions devised in response.  相似文献   
114.
As the volume of data relating to proteins increases, researchers rely more and more on the analysis of published data, thus increasing the importance of good access to these data that vary from the supplemental material of individual articles, all the way to major reference databases with professional staff and long‐term funding. Specialist protein resources fill an important middle ground, providing interactive web interfaces to their databases for a focused topic or family of proteins, using specialized approaches that are not feasible in the major reference databases. Many are labors of love, run by a single lab with little or no dedicated funding and there are many challenges to building and maintaining them. This perspective arose from a meeting of several specialist protein resources and major reference databases held at the Wellcome Trust Genome Campus (Cambridge, UK) on August 11 and 12, 2014. During this meeting some common key challenges involved in creating and maintaining such resources were discussed, along with various approaches to address them. In laying out these challenges, we aim to inform users about how these issues impact our resources and illustrate ways in which our working together could enhance their accuracy, currency, and overall value. Proteins 2015; 83:1005–1013. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   
115.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   
116.
117.
118.
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self‐sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental‐scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four‐species grass–legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2‐fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one‐third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one‐third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass–legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass–legume mixtures can substantially contribute to resource‐efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.  相似文献   
119.
When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non‐random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号