首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   60篇
  国内免费   1篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   11篇
  2015年   21篇
  2014年   27篇
  2013年   35篇
  2012年   40篇
  2011年   51篇
  2010年   31篇
  2009年   31篇
  2008年   35篇
  2007年   37篇
  2006年   37篇
  2005年   25篇
  2004年   39篇
  2003年   26篇
  2002年   23篇
  2001年   37篇
  2000年   32篇
  1999年   29篇
  1998年   12篇
  1997年   5篇
  1996年   12篇
  1995年   5篇
  1994年   10篇
  1993年   8篇
  1992年   20篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   14篇
  1985年   11篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1970年   3篇
  1964年   2篇
排序方式: 共有811条查询结果,搜索用时 93 毫秒
71.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   
72.
Hybrid sol-gel-derived xerogel films prepared from 45/55 (mol ratio) n-propyltrimethoxysilane (C3-TMOS)/tetramethylorthosilane (TMOS), 2/98 (mol ratio) bis[3-(trimethoxysilyl)propyl]-ethylenediamine (enTMOS)/tetraethylorthosilane (TEOS), 50/50 (mol ratio) n-octyltriethoxysilane (C8-TEOS)/TMOS, and 50/50 (mol ratio) 3,3,3-trifluoropropyltrimethoxysilane (TFP-TMOS)/TMOS were found to inhibit settlement of zoospores of the marine fouling alga Ulva (syn. Enteromorpha) relative to settlement on acid-washed glass and give greater release of settled zoospores relative to glass upon exposure to pressure from a water jet. The more hydrophobic 50/50 C8-TEOS/TMOS xerogel films had the lowest critical surface tension by comprehensive contact angle analysis and gave significantly greater release of 8-day Ulva sporeling biomass after exposure to turbulent flow generated by a flow channel than the other xerogel surfaces or glass. The 50/50 C8-TEOS/TMOS xerogel was also a fouling release surface for juveniles of the tropical barnacle Balanus amphitrite. X-ray photon electron data indicated that the alkylsilyl residues of the C3-TMOS-, C8-TEOS-, and TFP-TMOS-containing xerogels were located on the surface of the xerogel films (in a vacuum), which contributes to the film hydrophobicity. Similarly, the amine-containing silyl residues of the enTMOS/TEOS films were located at the surface of the xerogel films, which contributes to the more hydrophilic character and increased critical surface tension of these films.  相似文献   
73.
Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.  相似文献   
74.
Invasion of epithelial cells by Salmonella enterica is mediated by bacterial "effector" proteins that are delivered into the host cell by a type III secretion system. Although primarily known for their roles in actin rearrangements and membrane ruffling, translocated effectors also affect host cell processes that are not directly associated with invasion. Here, we show that SopB/SigD, an effector with phosphoinositide phosphatase activity, has anti-apoptotic activity in Salmonella-infected epithelial cells. Salmonella induced the sustained activation of Akt/protein kinase B, a pro-survival kinase, in a SopB-dependent manner. Failure to activate Akt resulted in increased levels of apoptosis after infection with a sopB deletion mutant (DeltasopB). Furthermore, cells infected with wild type bacteria, but not the DeltasopB strain, were protected from camptothecin-induced cleavage of caspase-3 and subsequent apoptosis. The anti-apoptotic activity of SopB was dependent on its phosphatase activity, because a catalytically inactive mutant was unable to protect cells from the effects of camptothecin. Finally, small interfering RNA was used to demonstrate the essential role of Akt in SopB-mediated protection against apoptosis. These results provide new insights into the mechanisms of apoptosis and highlight how bacterial effectors can intercept signaling pathways to manipulate host responses.  相似文献   
75.
76.

Background

In the analysis of complex traits, genetic effects can be confounded with non-genetic effects, especially when using full-sib families. Dominance and epistatic effects are typically confounded with additive genetic and non-genetic effects. This confounding may cause the estimated genetic variance components to be inaccurate and biased.

Methods

In this study, we constructed genetic covariance structures from whole-genome marker data, and thus used realized relationship matrices to estimate variance components in a heterogenous population of ~ 2200 mice for which four complex traits were investigated. These mice were genotyped for more than 10,000 single nucleotide polymorphisms (SNP) and the variances due to family, cage and genetic effects were estimated by models based on pedigree information only, aggregate SNP information, and model selection for specific SNP effects.

Results and conclusions

We show that the use of genome-wide SNP information can disentangle confounding factors to estimate genetic variances by separating genetic and non-genetic effects. The estimated variance components using realized relationship were more accurate and less biased, compared to those based on pedigree information only. Models that allow the selection of individual SNP in addition to fitting a relationship matrix are more efficient for traits with a significant dominance variance.  相似文献   
77.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium belong to the family of attaching and effacing (A/E) bacterial pathogens. They intimately attach to host intestinal epithelial cells, trigger the effacement of intestinal microvilli, and cause diarrheal disease. Central to their pathogenesis is a type III secretion system (T3SS) encoded by a pathogenicity island called the locus of enterocyte effacement (LEE). The T3SS is used to inject both LEE- and non-LEE-encoded effector proteins into the host cell, where these effectors modulate host signaling pathways and immune responses. Identifying the effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Here we analyzed the type III secretome of C. rodentium using the highly sensitive and quantitative SILAC (stable isotope labeling with amino acids in cell culture)-based mass spectrometry. This approach not only confirmed nearly all known secreted proteins and effectors previously identified by conventional biochemical and proteomic techniques, but also identified several new secreted proteins. The T3SS-dependent secretion of these new proteins was validated, and five of them were translocated into cultured cells, representing new or additional effectors. Deletion mutants for genes encoding these effectors were generated in C. rodentium and tested in a murine infection model. This study comprehensively characterizes the type III secretome of C. rodentium, expands the repertoire of type III secreted proteins and effectors for the A/E pathogens, and demonstrates the simplicity and sensitivity of using SILAC-based quantitative proteomics as a tool for identifying substrates for protein secretion systems.  相似文献   
78.
79.
Antibody-based assay systems are now accepted by regulatory authorities for detection of the toxins produced by phytoplankton that accumulate in shellfish tissues. However, the generation of suitable antibodies for sensitive assay development remains a major challenge. We have examined the potential of using the chicken immune system to generate high-affinity, high-specificity recombinant antibody fragments against phytotoxins. Following immunization of the chicken with domoic acid-bovine serum albumin, a single-chain antibody variable region (scFv) gene library was generated from single V(H) and V(L) genes isolated from the immune cells in the spleen and bone marrow. scFvs reacting with domoic acid were isolated by phage display and affinity matured by light chain shuffling, resulting in an approximate 10-fold increase in sensitivity. The isolated scFvs were effectively expressed in Escherichia coli and readily purified by affinity chromatography. They were then used to develop a convenient and sensitive indirect competitive enzyme-linked immunosorbent assay for domoic acid, with a 50% effective dose of 156 ng/ml, which could be used reliably with shellfish extracts. This study demonstrates that chickens provide a valuable model system for the simplified, rapid generation of high-affinity recombinant antibody fragments with specificity for small toxin molecules.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号