首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   54篇
  国内免费   2篇
  504篇
  2021年   5篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   10篇
  2014年   11篇
  2013年   13篇
  2012年   13篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   15篇
  2007年   8篇
  2006年   12篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   15篇
  2001年   9篇
  2000年   16篇
  1999年   14篇
  1998年   5篇
  1996年   6篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   11篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   5篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   10篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1975年   9篇
  1973年   4篇
  1972年   10篇
  1971年   5篇
  1970年   4篇
  1968年   5篇
  1967年   4篇
  1966年   7篇
  1965年   4篇
排序方式: 共有504条查询结果,搜索用时 15 毫秒
91.
Superoxide reaction with nitroxide spin-adducts   总被引:5,自引:0,他引:5  
The reactions of superoxide radical with persistent nitroxide spin-adducts or with stable spin-labels were studied using ESR spectrometry. Superoxide radicals were produced enzymatically using xanthine - xanthine oxidase or chemically by dissolving potassium superoxide in DMSO. Hydroxyl and methyl spin-adducts of the spin-trap DMPO were performed by sonolysis and subsequently reacted with superoxide radical. Superoxide-induced depletion of DMPO--OH obeyed second order kinetics. Contrary to previously published mechanisms, the reaction requires neither transition metal ions nor thiols. The depleted spin-adducts could not be restored by reoxidation with ferricyanide or copper +H2O2; thus, the superoxide-mediated destruction does not result in a mere one-electron reduction product. Superoxide also depletes other DMPO spin-adducts including DMPO--CH3 and DMPO--H, but not PBN--CH3. In addition, some 5-membered ring stable nitroxides are depleted by superoxide in a pseudo-zero order reaction. In studying systems which generate O2- and OH, the superoxide-induced destruction of DMPO--OH may well lead to erroneous conclusions regarding the primary radicals produced. In particular this reaction might be operative under circumstances where elevated rates of superoxide production take place, such as during oxygen consumption "burst" in phagocytosis, degranulation, or paraquat intoxication.  相似文献   
92.
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium.  相似文献   
93.
94.
95.
Summary C-terminal fragments of colicin E1, ranging in mol wt from 14.5 to 20kD, form channels with voltage dependence and ion selectivity qualitatively similar to those of whole E1, placing an upper limit on the channel-forming domain. Under certain conditions, however, the gating kinetics and ion selectivity of channels formed by these different E1 peptides can be distinguished. The differences in channel behavior appear to be correlated with peptide length. Enzymatic digestion with trypsin of membrane-bound E1 peptides converts channel behavior of longer peptides to that characteristic of channels formed by shorter fragments. Apparently trypsin removes segments of protein N-terminal to the channel-forming region, since gating behavior of the shortest fragment is little affected by the enzyme. The success of this conversion depends on the side of the membrane to which trypsin is added and on the state, open or closed, of the channel. Trypsin modifies only closed channels from thecis side (the side to which protein has been added) and only open channels from thetrans side. These results suggest that regions outside the channel-forming domain affect ion selectivity and gating, and they also provide evidence that large protein segments outside the channel-forming domain are translocated across the membrane with channel gating.  相似文献   
96.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5 -), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier.  相似文献   
97.
98.
The availability of primary sequences for ion-conducting channels permits the development of testable models for mechanisms of voltage gating. Previous work on planar phospholipid bilayers and lipid vesicles indicates that voltage gating of colicin E1 channels involves translocation of peptide segments of the molecule into and across the membrane. Here we identify histidine residue 440 as a gating charge associated with this translocation. Using site-directed mutagenesis to convert the positively charged His440 to a neutral cysteine, we find that the voltage dependence for turn-off of channels formed by this mutant at position 440 is less steep than that for wild-type channels; the magnitude of the change in voltage dependence is consistent with residue 440 moving from the trans to the cis side of the membrane in association with channel closure. The effect of trans pH changes on the ion selectivity of channels formed by the carboxymethylated derivative of the cysteine 440 mutant independently establishes that in the open channel state, residue 440 lies on the trans side of the membrane. On the basis of these results, we propose that the voltage-gated opening of colicin E1 channels is accompanied by the insertion into the bilayer of a helical hairpin loop extending from residue 420 to residue 459, and that voltage-gated closing is associated with the extrusion of this loop from the interior of the bilayer back to the cis side.  相似文献   
99.
Summary We compared the ability of murine lymphokine-activated killer (LAK) cells grown in either a serum-supplemented standard medium (MEM plus fetal calf serum) or a serum-free medium (AIM-V) to lyse a range of tumour targets. LAK cells grown in either of the media killed a cultured murine tumour line (YAC-1 lymphoma) well and spared syngeneic self cells (concanavalin-A-stimulated splenocytes). However, a striking difference was noted in the ability of LAK cells grown in MEM plus fetal calf serum (as opposed to AIM-V) to kill modified self cells (trinitrophenol-modified concanavalin A blasts); LAK cells grown in the former always killed modified self cells better than those grown in the latter. This pattern held under a broad range of experimental manipulations and was found to be related to a relative increase in CD3-bearing LAK cells grown in the standard medium. These data suggest that the two media cannot be used interchangeably. This conclusion may have clinical implications for the use of LAK cells, as animal studies have been done using LAK cells generated in serum-containing medium and clinical studies have used LAK cells generated in serum-free medium.  相似文献   
100.
Antidiuretic hormone (ADH) induces a large increase in the water permeability of the luminal membrane of toad urinary bladder. Measured values of the diffusional water permeability coefficient, Pd(w), are spuriously low, however, because of barriers within the tissue, in series with the luminal membrane, that impede diffusion. We have now determined the water permeability coefficient of these series barriers in fully stretched bladders and find it to be approximately 6.3 X 10(- 4) cm/s. This is equivalent to an unstirred aqueous layer of approximately 400 microns. On the other hand, the permeability coefficient of the bladder to a lipophilic molecule, hexanol, is approximately 9.0 X 10(-4) cm/s. This is equivalent to an unstirred aqueous layer of only 100 microns. The much smaller hindrance to hexanol diffusion than to water diffusion by the series barriers implies a lipophilic component to the barriers. We suggest that membrane-enclosed organelles may be so tightly packed within the cytoplasm of granular epithelial cells that they offer a substantial impediment to diffusion of water through the cell. Alternatively, the lipophilic component of the barrier could be the plasma membranes of the basal cells, which cover most of the basement membrane and thereby may restrict water transport to the narrow spaces between basal and granular cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号