首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   55篇
  国内免费   2篇
  2021年   5篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   10篇
  2014年   11篇
  2013年   13篇
  2012年   13篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   15篇
  2007年   8篇
  2006年   12篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   15篇
  2001年   9篇
  2000年   16篇
  1999年   14篇
  1998年   5篇
  1996年   6篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   11篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   5篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   10篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1975年   9篇
  1973年   4篇
  1972年   10篇
  1971年   5篇
  1970年   4篇
  1968年   5篇
  1967年   4篇
  1966年   7篇
  1965年   4篇
排序方式: 共有504条查询结果,搜索用时 531 毫秒
41.
Low concentrations of sugars altered the sensitivity of seed germination to inhibition by exogenous abscisic acid (ABA). Germination of wild-type and ABA-insensitive (abi) Arabidopsis seeds was assayed on media containing ABA and a variety of sugars and sugar alcohols. The inhibitory effects of ABA were strongly repressed in the presence of 15 to 90 mM glucose (Glc), sucrose, or fructose, but not by comparable concentrations of sorbitol or mannitol. Several features of the response to Glc are inconsistent with a purely nutritional effect: The optimal sugar concentration is low and differs between the wild type and the abi mutants. Furthermore, Glc suppression of ABA inhibition is light dependent and limited to the process of radicle emergence.  相似文献   
42.
Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes), which can be classified into “serogroups” based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps) locus. Twenty such “serotype switching” events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001) enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β–lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern.  相似文献   
43.
Galvanotaxis, that is, migration induced by DC electric fields, is thought to play a significant role in development and wound healing, however, the mechanisms by which extrinsic electric fields orchestrate intrinsic motility responses are unknown. Using mammalian cell lines (3T3, HeLa, and CHO cells), we tested one prevailing hypothesis, namely, that electric fields polarize charged cell surface molecules, and that these polarized molecules drive directional motility. Negatively charged sialic acids, which contribute the bulk of cell surface charge, redistribute preferentially to the surface facing the direction of motility, as measured by labeling with fluorescent wheat germ agglutinin. We treated cells with neuraminidase to remove sialic acids; as expected, this decreased total cell surface charge. We also changed cell surface charge independent of sialic acid moieties, by conjugating cationic avidin to the surface of live cells. Neuraminidase inhibited the electric field-induced directional polarization of membrane ruffling and alpha4 integrin, while avidin treatment actually reversed the directional polarization of sialic acids. Neuraminidase treatment inhibited directionality but did not alter speed of motility. Surprisingly, avidin treatment did not significantly alter either directionality or speed of motility. Thus, our results demonstrate that electric field-induced polarization of charged species indeed occurs. However, polarization of the bulk of charged cell surface proteins is neither necessary nor sufficient to cause motility, thus contradicting the second part of our hypothesis. Because neuraminidase inhibited directional motility, we also conclude that sialic acids are required constituents of some cell surface molecule(s) through which electric fields mount a polarized transmembrane response.  相似文献   
44.

Background:

Older people are at increased risk of traumatic spinal cord injury from falls. We evaluated the impact of older age (≥ 70 yr) on treatment decisions and outcomes.

Methods:

We identified patients with traumatic spinal cord injury for whom consent and detailed data were available from among patients recruited (2004–2013) at any of the 31 acute care and rehabilitation hospitals participating in the Rick Hansen Spinal Cord Injury Registry. Patients were assessed by age group (< 70 v. ≥ 70 yr). The primary outcome was the rate of acute surgical treatment. We used bivariate and multivariate regression models to assess patient and injury-related factors associated with receiving surgical treatment and with the timing of surgery after arrival to a participating centre.

Results:

Of the 1440 patients included in our study cohort, 167 (11.6%) were 70 years or older at the time of injury. Older patients were more likely than younger patients to be injured by falling (83.1% v. 37.4%; p < 0.001), to have a cervical injury (78.0% v. 61.6%; p = 0.001), to have less severe injuries on admission (American Spinal Injury Association Impairment Scale grade C or D: 70.5% v. 46.9%; p < 0.001), to have a longer stay in an acute care hospital (median 35 v. 28 d; p < 0.005) and to have a higher in-hospital mortality (4.2% v. 0.6%; p < 0.001). Multivariate analysis did not show that age of 70 years or more at injury was associated with a decreased likelihood of surgical treatment (adjusted odds ratio [OR] 0.48, 95% confidence interval [CI] 0.22–1.07). An unplanned sensitivity analysis with different age thresholds showed that a threshold of 65 years was associated with a decreased chance of surgical treatment (OR 0.39, 95% CI 0.19–0.80). Older patients who underwent surgical treatment had a significantly longer wait time from admission to surgery than younger patients (37 v. 19 h; p < 0.001).

Interpretation:

We found chronological age to be a factor influencing treatment decisions but not at the 70-year age threshold that we had hypothesized. Older patients waited longer for surgery and had a substantially higher in-hospital mortality despite having less severe injuries than younger patients. Further research into the link between treatment delays and outcomes among older patients could inform surgical guideline development.Globally there has been an epidemiologic shift in the age of patients who sustain a traumatic spinal cord injury.13 Although most people who have traumatic spinal cord injuries are 16–30 years old, there has been a progressive increase in the number who are over 70. The average age at injury has increased from 29 to 40 years.4 By 2032, patients over 70 are predicted to account for most patients with new traumatic spinal cord injuries.5 This change is attributed in part to aging baby boomers. It is unknown whether the management and outcomes of these older patients differ compared with younger patients.Older patients typically have more comorbid conditions, including cardiovascular disease, respiratory disorders, cerebrovascular disease and dementia, which are thought to increase their risk of perioperative adverse events.6 The use of anticoagulants for cardiac and cerebrovascular indications can delay timely surgical interventions. Older patients are also at increased risk of postoperative and medication-related adverse events, such as delirium.7 As a direct consequence of this perceived risk of perioperative adverse events and ambiguity about the optimal treatment for spinal cord injury in older patients, surgeons may deliberate for some time before making a clear therapeutic decision, they may choose nonoperative treatment,8 or they may delay the surgical treatment in an effort to optimize the patient’s condition medically.Given the increasing incidence of traumatic spinal cord injury in older adults, and the potential for differences in treatment among older and younger patients, we evaluated the impact of age on treatment decisions and outcomes among patients with traumatic spinal cord injury. We hypothesized that surgical management would differ at an age threshold of 70 years.  相似文献   
45.
Low pH triggers the translocation domain of diphtheria toxin (T-domain), which contains 10 α helices, to insert into a planar lipid bilayer membrane, form a transmembrane channel, and translocate the attached catalytic domain across the membrane. Three T-domain helices, corresponding to TH5, TH8, and TH9 in the aqueous crystal structure, form transmembrane segments in the open-channel state; the amino-terminal region, TH1–TH4, translocates across the membrane to the trans side. Residues near either end of the TH6–TH7 segment are not translocated, remaining on the cis side of the membrane; because the intervening 25-residue sequence is too short to form a transmembrane α-helical hairpin, it was concluded that the TH6–TH7 segment resides at the cis interface. Now we have examined this segment further, using the substituted-cysteine accessibility method. We constructed a series of 18 mutant T-domains with single cysteine residues at positions in TH6–TH7, monitored their channel formation in planar lipid bilayers, and probed for an effect of thiol-specific reagents on the channel conductance. For 10 of the mutants, the reagent caused a change in the single-channel conductance, indicating that the introduced cysteine residue was exposed within the channel lumen. For several of these mutants, we verified that the reactions occurred primarily in the open state, rather than in the flicker-closed state. We also established that blocking of the channel by an amino-terminal hexahistidine tag could protect mutants from reaction. Finally, we compared the reaction rates of reagent added to the cis and trans sides to quantify the residue’s accessibility from either side. This analysis revealed abrupt changes in cis- versus trans-side accessibility, suggesting that the TH6–TH7 segment forms a constriction that occupies a small portion of the total channel length. We also determined that this constriction is located near the middle of the TH8 helix.  相似文献   
46.
Aberrant posttranslational modifications (PTMs) of proteins, namely phosphorylation, induce abnormalities in the biological properties of recipient proteins, underlying neurological diseases including Parkinson''s disease (PD). Genome-wide studies link genes encoding α-synuclein (α-Syn) and Tau as two of the most important in the genesis of PD. Although several kinases are known to phosphorylate α-Syn and Tau, we focused our analysis on GSK-3β because of its accepted role in phosphorylating Tau and to increasing evidence supporting a strong biophysical relationship between α-Syn and Tau in PD. Therefore, we investigated transgenic mice, which express a point mutant (S9A) of human GSK-3β. GSK-3β-S9A is capable of activation through endogenous natural signaling events, yet is unable to become inactivated through phosphorylation at serine-9. We used behavioral, biochemical, and in vitro analysis to assess the contributions of GSK-3β to both α-Syn and Tau phosphorylation. Behavioral studies revealed progressive age-dependent impairment of motor function, accompanied by loss of tyrosine hydroxylase-positive (TH+ DA-neurons) neurons and dopamine production in the oldest age group. Magnetic resonance imaging revealed deterioration of the substantia nigra in aged mice, a characteristic feature of PD patients. At the molecular level, kinase-active p-GSK-3β-Y216 was seen at all ages throughout the brain, yet elevated levels of p-α-Syn-S129 and p-Tau (S396/404) were found to increase with age exclusively in TH+ DA-neurons of the midbrain. p-GSK-3β-Y216 colocalized with p-Tau and p-α-Syn-S129. In vitro kinase assays showed that recombinant human GSK-3β directly phosphorylated α-Syn at a single site, Ser129, in addition to its known ability to phosphorylate Tau. Moreover, α-Syn and Tau together cooperated with one another to increase the magnitude or rate of phosphorylation of the other by GSK-3β. Together, these data establish a novel upstream role for GSK-3β as one of several kinases associated with PTMs of key proteins known to be causal in PD.After Alzheimer''s disease (AD), Parkinson''s disease (PD) is the second most prevalent neurodegenerative disease, characterized by selective loss of TH+ DA-neurons of substantia nigra (SN) with diminished production of dopamine (DA).1 Genome-wide studies have identified SNCA and MAPT, genes encoding α-synuclein (α-Syn) and Tau, respectively, as having strong association to the genesis of PD.2, 3, 4 Although the precise etiology of PD remains a mystery, SNCA amplifications and mutations directly link α-Syn dysfunction to disease causation,5, 6 firmly establishing a role for α-Syn in sporadic and familial PD, respectively. α-Syn can be phosphorylated at several sites,7 and the predominance of α-Syn phosphorylated at serine 129 (S129) in Lewy bodies8 suggests its phosphorylation status at S129 has an important pathological role. Various PD models have shown that phosphorylation at S219 enhanced α-syn toxicity resulting in accelerated motor abnormalities and loss of DA-neurons.9, 10Fewer studies have examined the role of Tau (or p-Tau) in PD, but interest in the field has grown since completion of several genome-wide association studies. p-Tau has been found to colocalize with α-Syn in tissue from sporadic PD and dementia with Lewy bodies.11 We12, 13 and others14,15 have also identified p-Tau in different brain regions of PD, dementia with Lewy bodies, and AD. High levels of p-Tau have also been observed in vivo in several toxin16, 17, 18 and transgenic α-Syn models of PD,19,20 suggesting that p-Tau may be an important common factor in the neurodegeneration of not only tauopathies but also of synucleinopathies, such as PD.21, 22, 23, 24 Most studies to date have focused on the formation and accumulation of Tau and p-Tau in idiopathic PD. Yet several studies have provided evidence that leucine-rich repeat kinase-2 (LRRK2), a kinase, that when mutated is involved in familial forms of PD, can directly interact with, and activate GSK-3β, resulting in increased p-TAU formation.25,26Among the kinases known to hyperphosphorylate Tau, glycogen synthase kinase-3β (GSK-3β) may be the most important given its ability to phosphorylate Tau at the majority of its serine/threonine sites that cause associated toxicities in AD.27,28 The importance of GSK-3β is illustrated in that it is embryonically lethal when knocked out in mice. Regulation of GSK-3β is tightly controlled through a series of direct and indirect measures. Direct regulation occurs through autophosphorylation at Tyr216,29,30 resulting in a kinase-active form, p-GSK-3β-Y216, whereas phosphorylation at Ser9 results in a kinase-inactive state.31 The activity of GSK-3β can also be controlled indirectly through binding to inhibitory complexes with other cytoplasmic proteins,32,33 or through Wnt-mediated sequestration into multivesicular bodies34 resulting in the physical separation of GSK-3β from its cytoplasmic targets. Control of GSK-3β in the normal state is therefore tightly regulated, with its dysregulation and ensuing aberrant phosphorylation of targets being a common occurrence in many diverse diseases. Several studies have shown that GSK-3β is an important mediator in the injury and repair processes of neurons during cross-talk between DA-neurons and reactive astrocytes.35,36 These studies showed that astrocyte-derived Wnt1 was capable of blocking GSK-3β activation, allowing the nuclear accumulation of β-catenin and subsequent gene expression of β-catenin-dependent targets essential for neuron survival and repair during chemical or metabolic insults. The importance of regulating the active/inactive states of GSK-3β in regard to neuronal stability is further supported through the analysis of conditional (Tet-inducible) transgenic mice expressing a dominant-negative GSK-3β-K85R mutant or expressing the GSK-3β-S9A mutant.37,38 In these studies, post-natal Tet-regulated expression of either GSK-3β-K85R or GSK-3β-S9A led to neurodegeneration in the cortex, striatum, and hippocampus. What separates our TG PD model from the tet-inducible GSK-3β models is the spatial patterns of transgene expression, which is influenced by the choice of promoters. The Tet-inducible GSK-3β models are expressed using a CAMKII promoter with our human(h) GSK-3β-S9A transgene being expressed under the Thy-1 promoter. CAMKII-driven expression is limited to neurons originating from the forebrain with Thy-1 promoter-driven expression restricted to neurons in all or most brain regions.39,40 Although promoter choice effecting tissue expression ultimately decides which regions show degeneration, the important message is that both inactive and hyperactive states of GSK-3β reduce neuronal viability.In our past studies in various in vitro and in vivo models of PD and in postmortem PD tissues, we have consistently observed a positive correlation between increased α-Syn and p-Tau levels with increased GSK-3β-Y216 (the kinase-active form of GSK-3β).12, 13, 16, 19, 20 In in vitro studies of MPTP-treated SH-SY5Y cells, blockade of GSK-3β with lithium, or with the highly selective non-ATP competitive inhibitor, TDZD-8, prevented the induction of p-GSK-3β-Y216, abolished p-Tau formation, and reversed the accumulation and aggregation of both p-Tau and α-Syn, averting cell death.16 Other studies using Rotenone or MPTP/MPP+ in chemical PD models, have shown similar results of decreased neuronal viability during treatments accompanied by dose- and time-dependent increases in GSK-3β activation, with decreased cytotoxicity detected when GSK-3β was inhibited or knocked-down through the use of GSK-3β-specific small molecule inhibitors or through RNAi.41,42 This suggested to us that p-GSK-3β-Y216 may have a contributory role in the pathogenesis of PD. Using a mouse model overexpressing hGSK-3β-S9A under the Thy-1 promoter together with in vitro kinase assays allowed us to discern the role GSK-3β has in the development of PD-like pathology.43 Analysis of our hGSK-3β-S9A mouse model showed here for the first time that upon aging, these mice develop the cardinal features of parkinsonism, manifested as impaired motor behavior, with associated loss of TH+ neurons, reduced DA production, and shrinkage of SN. Invitro kinase assays confirmed that hGSK-3β was capable of phosphorylating α-Syn on Serine 129 together with the known ability to phosphorylate Tau. Remarkably, both α-Syn and Tau influenced the rate and magnitude of phosphorylation of the other by GSK-3β indicating that an intimate physical relationship exist between the trio of PD related proteins. Together, these data shown indicate the importance of GSK-3β activation, in the behavioral and physiological development of PD like pathology in a new mouse model.  相似文献   
47.
48.
49.

Background

Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.

Principal Findings

Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a “standard of care” chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents.

Significance

The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer.  相似文献   
50.
We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer''s disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号