首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   93篇
  1104篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   10篇
  2018年   6篇
  2017年   5篇
  2016年   13篇
  2015年   24篇
  2014年   39篇
  2013年   49篇
  2012年   56篇
  2011年   72篇
  2010年   38篇
  2009年   37篇
  2008年   54篇
  2007年   54篇
  2006年   50篇
  2005年   64篇
  2004年   75篇
  2003年   57篇
  2002年   68篇
  2001年   20篇
  2000年   15篇
  1999年   10篇
  1998年   21篇
  1997年   8篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   11篇
  1991年   9篇
  1990年   6篇
  1989年   10篇
  1988年   12篇
  1986年   6篇
  1985年   9篇
  1984年   7篇
  1983年   9篇
  1982年   11篇
  1981年   14篇
  1980年   14篇
  1979年   9篇
  1978年   7篇
  1976年   9篇
  1975年   5篇
  1973年   6篇
  1972年   5篇
  1970年   6篇
  1968年   5篇
排序方式: 共有1104条查询结果,搜索用时 0 毫秒
101.
102.
The effects of Nannochloropsis were studied on rats consuming hypercholesterolemic diets. The whole biomass and the hexane/ethanol extract increased the plasma and hepatic eicosapentaenoic and docosahexaenoic acids levels, and reduced the cholesterol levels. We also observed a higher level of propionate, and a lower ratio between acetate and propionate. These data suggest the efficacy of Nannochloropsis in reducing cholesterol levels.  相似文献   
103.
104.
The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis.  相似文献   
105.
Previous studies have shown that melatonin is implicated in modulating learning and memory processing. Melatonin also exerts neuroprotective activities against Aβ-induced injury in vitro and in vivo. Neu-P11 (piromelatine, N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-pyran-2-carboxamide) is a novel melatonin (MT1/MT2) receptor agonist and a serotonin 5-HT1A/1D receptor agonist recently developed for the treatment of insomnia. In the present study we firstly investigated whether Neu-P11 and melatonin enhance memory performance in the novel object recognition (NOR) task in rats, and then assessed whether Neu-P11 and melatonin improve neuronal and cognitive impairment in a rat model of Alzheimer' disease (AD) induced by intrahippocampal Aβ(1–42) injection. The results showed that a single morning or afternoon administration of Neu-P11 enhanced object recognition memory measured at 4 or 24 h after training. Melatonin was effective in the memory facilitating effects only when administered in the afternoon. Further results showed that intrahippocampal Aβ(1–42) injection resulted in hippocampal cellular loss, as well as decreased learning ability and memory in the Y maze and NOR tasks in rats. Neu-P11 but not melatonin attenuated cellular loss and cognitive impairment in the rat AD model. The current data suggest that Neu-P11 may serve as a novel agent for the treatment of AD.  相似文献   
106.
The N-terminal fusion peptide (FP) of human immunodeficiency virus-1 (HIV-1) is a potent inhibitor of cell-cell fusion, possibly because of its ability to recognize the corresponding segments inside the fusion complex within the membrane. Here we show that a fusion peptide in which the highly conserved Ile(4), Phe(8), Phe(11), and Ala(14) were replaced by their d-enantiomers (IFFA) is a potent inhibitor of cell-cell fusion. Fourier transform infrared spectroscopy confirmed that despite these drastic modifications, the peptide preserved most of its structure within the membrane. Fluorescence energy transfer studies demonstrated that the diastereomeric peptide interacted with the wild type FP, suggesting this segment as the target site for inhibition of membrane fusion. This is further supported by the similar localization of the wild type and IFFA FPs to microdomains in T cells and the preferred partitioning into ordered regions within sphingomyelin/phosphatidyl-choline/cholesterol giant vesicles. These studies provide insight into the mechanism of molecular recognition within the membrane milieu and may serve in designing novel HIV entry inhibitors.  相似文献   
107.
RATIONAL AND OBJECTIVES: Activation of fully differentiated vascular cells using angiogenic genes can lead to phenotypic changes resulting in formation of new blood vessels. We tested whether Ang-1 gene transfer to endothelial cells (EC) activates these cells. METHODS AND RESULTS: EC and SMC were transduced using retroviral or adenoviral vectors to produce Ang-1 or vascular endothelial growth factor (VEGF). EC Tie-2 receptor was phosphorilated by autologous secretion of Ang-1. Transduced EC and SMC sprouting capacity was tested using collagen embedded spheroids assay and capacity to produce arteriogenesis was tested in a hind limb model of ischemia. EC expressing Ang-1 in the presence of SMC expressing VEGF exhibited high levels of sprouting of the two cell types. Flow and numbers of arteries were increased after transduced cells implantation in vivo. CONCLUSIONS: Autologous secretion of Ang-1 by transduced EC resulted in Tie-2 activation and in the presence of SMC expressing VEGF resulted in coordinated sprouting in vitro and increase in flow and number of arteries in vivo.  相似文献   
108.
Intrauterine infection affects placental development and function, and subsequently may lead to complications such as preterm delivery, intrauterine growth retardation, and preeclampsia; however, the molecular mechanisms are not clearly known. TLRs mediate innate immune responses in placenta, and recently, TLR2-induced trophoblast apoptosis has been suggested to play a role in infection-induced preterm delivery. Chlamydia trachomatis is the etiological agent of the most prevalent sexually transmitted bacterial infection in the United States. In this study, we show that in vitro chlamydial heat shock protein 60 induces apoptosis in primary human trophoblasts, placental fibroblasts, and the JEG3 trophoblast cell line, and that TLR4 mediates this event. We observed a host cell type-dependent apoptotic response. In primary placental fibroblasts, chlamydial heat shock protein 60-induced apoptosis was caspase dependent, whereas in JEG3 trophoblast cell lines it was caspase independent. These data suggest that TLR4 stimulation induces apoptosis in placenta, and this could provide a novel mechanism of pathogenesis for poor fertility and pregnancy outcome in women with persistent chlamydia infection.  相似文献   
109.
Research into archaea will not achieve its full potential until systems are in place to carry out genetics and biochemistry in the same species. Haloferax volcanii is widely regarded as the best-equipped organism for archaeal genetics, but the development of tools for the expression and purification of H. volcanii proteins has been neglected. We have developed a series of plasmid vectors and host strains for conditional overexpression of halophilic proteins in H. volcanii. The plasmids feature the tryptophan-inducible p.tnaA promoter and a 6×His tag for protein purification by metal affinity chromatography. Purification is facilitated by host strains, where pitA is replaced by the ortholog from Natronomonas pharaonis. The latter lacks the histidine-rich linker region found in H. volcanii PitA and does not copurify with His-tagged recombinant proteins. We also deleted the mrr restriction endonuclease gene, thereby allowing direct transformation without the need to passage DNA through an Escherichia coli dam mutant.Over the past century, our understanding of fundamental biological processes has grown exponentially, and this would have been impossible without the use of organisms that are amenable to experimental manipulation. Model species, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Arabidopsis thaliana, have become a byword for scientific progress (15). The rational choice of a model organism is critically important, and certain features are taken for granted, such as ease of cultivation, a short generation time, and systems for genetic manipulation. This list has now grown to include a genome sequence and methods for biochemical analysis of purified proteins in vitro.Research into archaea has lagged behind work on bacteria and eukaryotes but has nonetheless yielded profound insights (2). One hurdle has been the paucity of archaeal organisms suitable for both biochemistry and genetics. For example, Methanothermobacter thermautotrophicus is a stalwart of archaeal biochemistry but has proved resistant to even the most rudimentary genetic manipulation (2). Progress has recently been made with another biochemical workhorse, Sulfolobus spp., and a few genetic tools are now available (6, 13, 37). Methanosarcina spp. and Thermococcus kodakaraensis offer alternative systems with an increasing array of techniques (16, 35, 36), but sophisticated genetics has traditionally been the preserve of haloarchaea, of which Haloferax volcanii is the organism of choice (39). It is easy to culture, the genome has been sequenced (19), and there are several selectable markers and plasmids for transformation and gene knockout (3, 7, 31), including a Gateway system (14), as well as reporter genes (20, 33) and a tightly controlled inducible promoter (26).The genetic prowess of H. volcanii is not yet fully matched by corresponding systems for protein overexpression and purification. Like other haloarchaea, H. volcanii grows in high salt concentrations (2 to 5 M NaCl), and to cope with the osmotic potential of such environments, it accumulates high intracellular concentrations of potassium ions (12). Consequently, halophilic proteins are adapted to function at high salt concentrations and commonly feature a large excess of acidic amino acids; the negative surface charge is thought to be critical to solubility (28). This can pose problems for expression in heterologous hosts, such as E. coli, since halophilic proteins can misfold and aggregate under conditions of low ionic strength. The purification of misfolded halophilic enzymes from E. coli has relied on the recovery of insoluble protein from inclusion bodies, followed by denaturation and refolding in hypersaline solutions (8, 11). This approach is feasible only where the protein is well characterized and reconstitution of the active form can be monitored (for example, by an enzymatic assay). Furthermore, archaeal proteins expressed in heterologous bacterial hosts lack posttranslational modifications, such as acetylation or ubiquitination (4, 22), which are critical to understanding their biological function.Systems for expression of halophilic proteins in a native haloarchaeal host are therefore required. A number of studies have successfully purified recombinant proteins with a variety of affinity tags after overexpression in H. volcanii. For example, Humbard et al. employed tandem affinity tagging to purify 20S proteasomal core particles from the native host (23). However, the protein expression constructs used in these studies were custom made and somewhat tailored to the application in question. We report here the development of “generic” plasmid vectors and host strains for conditional overexpression of halophilic proteins in H. volcanii. The plasmids feature a tryptophan-inducible promoter derived from the tnaA gene of H. volcanii (26). We demonstrate the utility of these vectors by overexpressing a hexahistidine-tagged recombinant version of the H. volcanii RadA protein. Purification was greatly facilitated by a host strain in which the endogenous pitA gene was replaced by an ortholog from Natronomonas pharaonis. The latter protein lacks the histidine-rich linker region found in H. volcanii PitA (5) and therefore does not copurify with His-tagged recombinant proteins. Finally, we deleted the mrr gene of H. volcanii, which encodes a restriction enzyme that cleaves foreign DNA methylated at GATC residues. The mrr deletion strain allows direct transformation of H. volcanii without the need to passage plasmid DNA through an E. coli dam mutant (21).  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号