首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
61.
In this study we have investigated various components of the stimulus-secretion coupling process leading to aldosterone secretion from the calf adrenal glomerulosa cells as evoked by angiotensin II (AII) and potassium (K+). The roles of Ca2+, calmodulin and protein kinase C in the sustained phase rather than initiation of aldosterone secretion were of special interest. Our investigations revealed that the reduction of extracellular Ca2+ by EGTA or interruption of Ca2+ influx by nitrendipine at various time points after stimulation with either AII or K+ markedly compromised aldosterone secretion. Calmodulin inhibitors, calmidazolium and W-7 reduced aldosterone secretion profoundly. Agonists of protein kinase C, phorbol ester or diacylglycerol analogues failed to stimulate aldosterone secretion while the protein kinase C inhibitor, H-7, only partially inhibited aldosterone secretion at a concentration which completely inhibited protein kinase C activity. Calmodulin inhibitors produced significantly greater inhibition of aldosterone secretion than inhibitors of protein kinase C.  相似文献   
62.
Caldwell JC  Fineberg SK  Eberl DF 《Fly》2007,1(3):146-152
The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo(1) and rdo(2), were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3'UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system.  相似文献   
63.
Human red and green visual pigment genes are X-linked duplicate genes. To study their evolutionary history, introns 2 and 4 (1,987 and 1,552 bp, respectively) of human red and green pigment genes were sequenced. Surprisingly, we found that intron 4 sequences of these two genes are identical and that the intron 2 sequences differ by only 0.3%. The low divergences are unexpected because the duplication event producing the two genes is believed to have occurred before the separation of the human and Old World monkey (OWM) lineages. Indeed, the divergences in the two introns are significantly lower than both the synonymous divergence (3.2% +/- 1.1%) and the nonsynonymous divergence (2.0% +/- 0.5%) in the coding sequences (exons 1-6). A comparison of partial sequences of exons 4 and 5 of human and OWM red and green pigment genes supports the hypothesis that the gene duplication occurred before the human-OWM split. In conclusion, the high similarities in the two intron sequences might be due to very recent gene conversion, probably during evolution of the human lineage.   相似文献   
64.
Mycobacterium ulcerans produces a macrolide exotoxin, mycolactone which suppresses immune cells activity, is toxic to most cells and the key virulence factor in the pathogenesis of Buruli ulcer disease. Mycolactone is reported to mediate the production of reactive oxygen species in keratinocytes; cells that play critical role in wound healing. Increased levels of reactive oxygen species have been shown to disrupt the well-ordered process of wound repair; hence, the function of wound-healing cells such as macrophages, keratinocytes, and fibroblast could be impaired in the presence of the reactive oxygen species mediator, mycolactone. To ensure regeneration of tissues in chronic ulcers, with proper and timely healing of the wounds, natural antioxidants that can combat the effects of induced reactive oxygen species in wound-healing cells ought to be investigated. Reactive oxygen species activity was determined in mycolactone-treated RAW 264.7 macrophages and the scavenging ability of the antioxidants (ascorbic acid, gallic acid, and green tea kombucha) against mycolactone-induced reactive oxygen species (superoxide anions) was assessed using fluorescein probe (DCF-DA) and nitroblue tetrazolium dye. Cytotoxicity of the antioxidants, mycolactone, and the protective effect of the antioxidants on the cells upon treatment with mycolactone were determined using the Alamar blue assay. The expression levels of endogenous antioxidant enzyme genes (superoxide dismutase, catalase, and glutathione peroxidase) in response to mycolactone-mediated reactive oxygen species were determined using RT-qPCR. Mycolactone induced the production of reactive oxygen species in RAW 264.7 macrophages, and the resulting superoxide anions were scavenged by some of the antioxidants. The selected endogenous antioxidant enzyme genes in the macrophages were upregulated in the presence of the antioxidants and mycolactone. The exogenously supplied ascorbic acid and green tea kombucha offered moderate protection to the macrophages against the toxicity of mycolactone. We conclude that the results provide insights into alternate and adjunct therapeutic approaches in Buruli ulcer treatment, which could significantly attenuate the toxicity of the pathogenic factor; mycolactone.  相似文献   
65.
66.
67.
68.
A challenging topic in cancer research is to create drug delivery system that can bring in a specific and noncytotoxic manner a therapeutic compound. Usually, tumor targeting requires very specific compounds. Currently, peptide analogues like somatostatin, neurotensin, or bombesin are used to target G-coupled receptors, which are overexpressed on tumor cells. However, many of those analogues are rapidly degraded in the plasma and are cytotoxic [1–2]. Due to the limited efficiency and high toxicity of conventional chemotherapy different strategies have been developed for non-cytotoxic cancer treatment and cancer localization [3–5]. The recent development in bio-nanotechnology offers new avenues for cancer therapy. A lot of studies have been devoted to nanoparticulate delivery systems (10–100nm) like lipid or polymer particles [6–8]. Due to the nanometer sized of such cargos, the transportation of therapeutic compounds in the blood stream is increased in terms of time circulation. But their surface functionalization to improve drug-targeting properties is usually complicated and rather uneffective. We have recently designed a novel type of functional nanoparticles with regular icosahedral symmetry, mimicking small, rigid viral capsids (Fig. 1 (A)) and a diameter of about 17 nm (Fig. 1 (C)) which self-assemble from single polypeptide chains (Fig. 1 (B)).  相似文献   
69.
The sodium/iodide symporter mediates active iodide transport in both healthy and cancerous thyroid tissue. By exploiting this activity, radioiodide has been used for decades with considerable success in the detection and treatment of thyroid cancer. Here we show that a specialized form of the sodium/iodide symporter in the mammary gland mediates active iodide transport in healthy lactating (but not in nonlactating) mammary gland and in mammary tumors. In addition to characterizing the hormonal regulation of the mammary gland sodium/iodide symporter, we demonstrate by scintigraphy that mammary adenocarcinomas in transgenic mice bearing Ras or Neu oncogenes actively accumulate iodide by this symporter in vivo. Moreover, more than 80% of the human breast cancer samples we analyzed by immunohistochemistry expressed the symporter, compared with none of the normal (nonlactating) samples from reductive mammoplasties. These results indicate that the mammary gland sodium/iodide symporter may be an essential breast cancer marker and that radioiodide should be studied as a possible option in the diagnosis and treatment of breast cancer.  相似文献   
70.
Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α‐synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α‐synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α‐synuclein degradation, as evidenced by the accumulation of endogenous α‐synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy‐lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over‐expressing wild‐type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α‐synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α‐synuclein accumulation as a therapeutic strategy against development of synucleinopathy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号