首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   81篇
  国内免费   18篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   6篇
  2017年   6篇
  2016年   12篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   27篇
  2011年   21篇
  2010年   17篇
  2009年   11篇
  2008年   24篇
  2007年   29篇
  2006年   26篇
  2005年   34篇
  2004年   22篇
  2003年   24篇
  2002年   15篇
  2001年   12篇
  2000年   21篇
  1999年   18篇
  1998年   17篇
  1997年   10篇
  1996年   8篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   11篇
  1991年   14篇
  1990年   19篇
  1989年   9篇
  1988年   11篇
  1987年   8篇
  1986年   14篇
  1985年   15篇
  1984年   15篇
  1983年   12篇
  1982年   12篇
  1981年   6篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   14篇
  1976年   14篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1931年   4篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
91.
Late winter-to-summer changes (April to July) in ocean acidification state, calcium carbonate (CaCO3) saturation for aragonite (Ω a) and calcite (Ω c) and biogeochemical properties were investigated in 2013 and 2014 in Kongsfjorden, Svalbard. We investigated physical (salinity, temperature) and chemical (carbonate system, nutrient) properties in the water column from the glacier front in the fjord to the west Spitsbergen shelf. The average range of Ω a in the upper 50 m in the fjord in winter was 1.59–1.74 and in summer 1.65–2.66. The lowest Ω a (1.5) was close to the reported critical threshold for aragonite-forming organisms such as the pteropod Limacina helicina. In summer 2013, Ω a, pHT and salinity were generally lower than in 2014 as a result of a larger influence of high-CO2 water from the coastal current and less Atlantic water. The inner fjord was influenced by glacial water in summer which decreased Ω a by 0.7. Biological CO2 consumption based on a winter-to summer decrease in nitrate was larger in 2014 than in 2013, suggesting more primary production in 2014. The influence of freshwater decreased Ω a by the same amount as the biological effect increased Ω a. The seasonal increase in temperature only played a minor role on the increase of Ω a. The biological effect showed more inter-annual variability than the effect of freshwater. Based on this study, we suggest that changes in the inflow of different water masses and freshwater directly influence ocean acidification state, but also indirectly affect the biological drivers of carbonate chemistry in the fjord.  相似文献   
92.
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.  相似文献   
93.
1. The effects of nitric acidification on phytoplankton were studied in a small, eperimentally manipulated, oligotrophic lake (L302N) in the Eperimental Lakes Area of Canada. The focus was altered after 9 years of acidification to investigate the possibility of using nutrient additions to stimulate recovery, followed by a controlled incremental recovery, in which the pH was increased to a predetermined target level. 2. Five years of additions of HNO3 to L302N reduced its pH from 6.5 to 6.1. Nitrate concentration increased because the algal community was severely P deficient. The phytoplankton community structure and productivity were not significantly affected by these additions. 3. The phytoplankton community was significantly affected when pH was subsequently decreased over three successive years from 6.1 to 5.1 by the addition of HCl. Dominance shifted from chrysophytes to a co-dominance of chlorophytes and dinoflagellates, which altered the size structure of the community. Species diversity significantly decreased, although phytoplankton productivity remained unchanged. 4. At pH 5.1 nitrate and sulphate additions were made, creating conditions like those in lakes in eastern North America, which receive high loadings of nitrogen from the atmosphere. The phytoplankton assemblage shifted to dominance by small coccoidal chlorophytes. However, biomass and productivity were unaffected. 5. Finally, phosphate, as phosphoric acid, was added, along with nitrate and sulphate, to the epilimnion, which stimulated internal alkalinity generation and productivity. It is concluded that CO2 concentrations and the form of N (nitrate vs. ammonia) affect algal composition but that P determines algal biomass and productivity. Chlorophytes were found to be good competitors for P when N and CO2 were high; it is epected that cyanobacteria would be more competitive for P in low CO2 systems. Conversely, dinoflagellates are most competitive in systems with low pH and high P, such as that which occurred in L302N. Although the P additions reduced N concentrations and created alkalinity, this is not a recommended remedial procedure in acidified lakes because it enhanced dinoflagellate abundance, which has been associated with fish kills. 6. When all additions ceased, the pH of L302N recovered from 5.1 to 5.8, chrysophytes and chlorophytes became more abundant and dinoflagellates decreased in abundance. Phytoplankton biomass decreased and species diversity increased. Phytoplankton productivity remained unchanged  相似文献   
94.
Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC ≈ 5 mg/L). Small DOC additions (ΔC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5× greater in macrophyte-C systems than in controls, but LAPase and β-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, β-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting greater use of raffinose, pyroglutamic acid, and sebacic acid. Results suggest that pelagic bacterial communities respond to changes in organic carbon source rapidly and by different routes, including shifts in per-cell production rates and variations in degradation of a variety of compounds comprising the DOC pool. Received: 5 June 1998; Accepted: 24 August 1998  相似文献   
95.
Cohesins are a group of conserved proteins responsible for cohesion between replicated sister chromatids during mitosis and meiosis and which are implicated in double-strand break repair and meiotic recombination. We describe here the identification and characterisation of an Arabidopsis gene - DETERMINATE, INFERTILE1 (DIF1), which is a homolog of the Schizosaccharomyces pombe REC8/RAD21 cohesin genes, and is essential for meiotic chromosome segregation. Five independent alleles of the DIF1 gene were isolated by transposon mutagenesis, and the mutants show complete male and female sterility. Pollen mother cells (PMCs) of dif1 mutants show multiple meiotic defects which are represented by univalent chromosomes and chromosome fragmentation at metaphase I, and acentric fragments and chromatin bridges in meiosis I and II. Consequently, chromosome segregation is strongly affected, resulting in meiotic products of uneven size, shape and of variable ploidy. The similarities in phenotype, and the sequence homology between DIF1 and the REC8/RAD21 cohesins suggests that cohesin function is largely conserved between eukaryotes and highlights the essential role cohesins play in plant meiosis.  相似文献   
96.
97.
The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A "minimal chaplin strain" containing only chpC, chpE, and chpH was constructed and was found to raise a substantial aerial mycelium. This strain was used to examine the roles of specific chaplins. Within this strain, the Cys-containing ChpH was identified as the major polymerization unit contributing to aerial hypha formation and assembly of an intricate rodlet ultrastructure on the aerial surfaces, and the two Cys residues were determined to be critical for its function. ChpC augmented aerial hypha formation and rodlet assembly, likely by anchoring the short chaplins to the cell surface, while ChpE was essential for the viability of wild-type S. coelicolor. Interestingly, the lethal effects of a chpE null mutation could be suppressed by the loss of the other chaplins, the inactivation of the twin arginine translocation (Tat) secretion pathway, or the loss of the rodlins.  相似文献   
98.
The interface between the host cell and the microsymbiont is an important zone for development and differentiation during consecutive stages of Rhizobium-legume symbiosis. Legume root nodule extensins, otherwise known as arabinogalactan protein-extensins (AGPEs) are abundant components of infection thread matrix. We have characterized the origin and distribution of these glycoproteins at the symbiotic interface of root nodules of symbiotically defective mutants of pea (Pisum sativum L.) by using immunogold localization with MAC265 an anti-AGPE monoclonal antibody. For mutants with defective growth of infection threads, the AGPE epitope was abundant in the extracellular matrix surrounding infected host cells in the central infected tissue of the nodule, as well as in the lumen of Rhizobiuminduced infection threads. This seems to indicate a mistargeting of AGPE as a consequence of abnormal growth of the infection threads. Furthermore, mutants in the gene sym33 showed reduced labeling with MAC265 and, in some infection threads and droplets, the label was completely absent, a phenomenon that is not observed in wild-type nodules. This suggests an alteration in the composition of the infection thread matrix for sym33 mutants, which may be correlated to the absence of endocytosis of rhizobia into the host cytoplasm.  相似文献   
99.
Conserved ortholog set (COS) markers are evolutionary conserved, single-copy genes, identified from large databases of express sequence tags (ESTs). They are of particular use for constructing syntenic genetic maps among species. In this study, we identified a set of 1,813 putative single-copy COS markers between spruce and loblolly pine, then designed primers for 931 of these markers and tested these primers with DNA from spruce, pine, and Douglas fir. Of these 931 primers, 56% (524) amplified a product in both spruce and pine, and 71% (373) of these were single-banded; 224 amplicons were single-banded in all three species. Even though these COS markers were selected from large EST databases, a substantial proportion (20–30%) of amplicons displayed multiple bands or smears, suggesting significant paralogy. Sequencing of three single-banded amplicons showed high nucleotide similarities among 29 conifer species, suggesting orthology of single-banded amplicons. Screening for COS marker polymorphism in two pedigrees of white spruce and two pedigrees of loblolly pine revealed an average informativeness of 36% for spruce and 24% for pine (e.g., at least one parent was heterozygous for a single-nucleotide polymorphism within the entire amplified product). This corresponds to an average nucleotide heterozygosity of 0.05% and 0.03%, respectively, which is considerably lower than that found in other studies of spruce and pine. Thus, the advantages of COS markers for constructing syntenic maps are offset by their lower polymorphism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
100.
Internationally, waterways within urban areas are subject to broad-scale environmental impairment from urban land uses. In this study, we used in-stream macroinvertebrates as surrogates to measure the aquatic health of urban streams in the established suburbs of northern Sydney, in temperate south eastern Australia. We compared these with samples collected from streams flowing in adjacent naturally vegetated catchments. Macroinvertebrates were collected over a 30-month period from riffle, edge and pool rock habitats and were identified to the family level. Macroinvertebrate assemblages were assessed against the influence of imperviousness and other catchment and water quality variables. The study revealed that urban streams were significantly impaired compared with those that flowed through naturally vegetated non-urban catchments. Urban streams had consistently lower family richness, and sensitive guilds were rare or missing. We found that variation in community assemblages among the in-stream habitats (pool edges, riffles and pool rocks) were more pronounced within streams in naturally vegetated catchments than in urban waterways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号