首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   21篇
  208篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   14篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   14篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   1篇
  1996年   6篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1977年   2篇
  1966年   1篇
  1965年   5篇
  1962年   1篇
  1961年   2篇
  1960年   2篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
  1950年   1篇
  1941年   1篇
  1938年   1篇
排序方式: 共有208条查询结果,搜索用时 0 毫秒
21.
Antibody staining was observed in the electron microscope by means of untagged antibody and osmium fixation. The antibody was visualized as a change in morphology due to its deposition on the antigenic structures. Glycerinated chicken breast muscle was stained with antimyosin, anti-H-meromyosin, and antiactin. The staining patterns obtained by electron microscopy were consistent with those previously demonstrated by fluorescence microscopy. A second method was used for confirmation of antibody staining. This consisted of extraction of unstained portions of the sarcomere with 0.6 M potassium iodide, 10-4 M adenosine triphosphate solution. Stained regions of the sarcomere remained intact because of insolubility of the combined antigen and antibody.  相似文献   
22.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP.  相似文献   
23.
In extending our previous studies toward development of an engineered distal lung tissue construct (M. J. Mondrinos, S. Koutzaki, E. Jiwanmall, M. Li, J. P. Dechadarevian, P. I. Lelkes, and C. M. Finck. Tissue Eng 12: 717-728, 2006), we studied the effects of exogenous fibroblast growth factors FGF10, FGF7, and FGF2 on mixed populations of embryonic day 17.5 murine fetal pulmonary cells cultured in three-dimensional collagen gels. The morphogenic effects of the FGFs alone and in various combinations were assessed by whole mount immunohistochemistry and confocal microscopy. FGF10/7 significantly increased epithelial budding and proliferation; however, only FGF10 alone induced widespread budding. FGF7 alone induced dilation of epithelial structures but not widespread budding. FGF2 alone had a similar dilation, but not budding, effect in epithelial structures, and, in addition, significantly enhanced endothelial tubular morphogenesis and network formation, as well as mesenchymal proliferation. The combination of FGF10/7/2 induced robust budding of epithelial structures and the formation of uniform endothelial networks in parallel. These data suggest that appropriate combinations of exogenous FGFs chosen to target specific FGF receptor isoforms will allow for control of lung epithelial and mesenchymal cell behavior in the context of an engineered system. We propose that tissue-engineered fetal distal lung constructs could provide a potential source of tissue or cells for lung augmentation in pediatric pulmonary pathologies, such as pulmonary hypoplasia and bronchopulmonary dysplasia. In addition, engineered systems will provide alternative in vitro venues for the study of lung developmental biology and pathobiology.  相似文献   
24.
Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.  相似文献   
25.

Background

Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called crossbreeding and hybridization in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.

Results

We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.

Conclusion

Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.  相似文献   
26.
Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.  相似文献   
27.
Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.  相似文献   
28.
29.

Background

The predictive ability of genomic estimated breeding values (GEBV) originates both from associations between high-density markers and QTL (Quantitative Trait Loci) and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information.

Methods

The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation). Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability.

Results

Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values). In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding populations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号