首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   19篇
  国内免费   4篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   15篇
  2017年   9篇
  2016年   11篇
  2015年   10篇
  2014年   18篇
  2013年   10篇
  2012年   18篇
  2011年   14篇
  2010年   11篇
  2009年   13篇
  2008年   24篇
  2007年   16篇
  2006年   12篇
  2005年   18篇
  2004年   9篇
  2003年   13篇
  2002年   9篇
  2001年   13篇
  2000年   14篇
  1999年   7篇
  1998年   6篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1976年   3篇
  1975年   5篇
  1974年   12篇
  1973年   13篇
  1972年   4篇
  1971年   5篇
  1969年   1篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
排序方式: 共有415条查询结果,搜索用时 125 毫秒
31.
32.
33.
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.  相似文献   
34.
35.
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1-3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C-H?O contacts. In contrast to polymers 1-3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C-H?O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.  相似文献   
36.
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of approximately 16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.  相似文献   
37.
Age-related macular degeneration (AMD) is a complex multifactorial disease that affects the central region of the retina. AMD is clinically heterogeneous, leading to geographic atrophy (GA) and/or choroidal neovascularization (CNV) at advanced stages. Considerable data exists in support of a genetic predisposition for AMD. Recent linkage studies have provided evidence in favor of several AMD susceptibility loci. We have performed a high-resolution (5-cM) genome scan of 412 affected relative pairs that were enriched for late-stage disease (GA and/or CNV). Nonparametric linkage analysis was performed using two different diagnostic criteria and also by dividing the affected individuals according to GA or CNV phenotype. Our results demonstrate evidence of linkage in regions that were suggested in at least one previous study at chromosomes 1q (236-240 cM in the Marshfield genetic map), 5p (40-50 cM), and 9q (111 cM). Multipoint analysis of affected relatives with CNV provided evidence of additional susceptibility loci on chromosomes 2p (10 cM) and 22q (25 cM). A recently identified Gln5345Arg change in HEMICENTIN-1 on chromosome 1q25 was not detected in 274 affected members in the restricted group with AMD, 346 additional patients with AMD, and 237 unaffected controls. Our results consolidate the chromosomal locations of several AMD susceptibility loci and, together with previous reports, should facilitate the search for disease-associated sequence variants.  相似文献   
38.
Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6large and E6*. We have previously demonstrated the differential effects of E6large and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6large/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6large/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6large/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6large/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner.The relationship between viruses and cancers is reflected in the observation that viral infections account for approximately 10 to 15% of the cancer burden worldwide (6, 60). This makes viral infections one of the preventable risk factors of cancer. Viruses are associated with several human malignancies, including hepatitis B and C virus-associated hepatocellular carcinomas (48), Epstein-Barr virus-associated nasopharyngeal carcinomas and lymphomas (36), and human T-cell leukemia virus-associated adult T-cell leukemia (8, 28). Although there is a correlation between infection and the onset of cancer, the frequency of infection supersedes the incidence of cancer inception, suggesting that the presence of the virus alone is not sufficient to trigger carcinogenesis. Progression from viral infection to tumor development therefore requires additional environmental and cellular factors in addition to the expression and activity of virus-encoded proteins (40).High-risk strains of human papillomavirus (HPV) (high-risk HPV [HR-HPV]) such as HPV16 and HPV18 have been implicated in most cases of cervical cancer and also in a subset of head and neck cancers (24, 26, 39). Infection with oncogenic strains of HPV represents up to 75% of all infections. Furthermore, 1/10 of all deaths among women worldwide can be attributed to HR-HPV-related cancers (44, 45). The key players in promoting cell transformation and immortalization following HPV infection are the viral early proteins E6 and E7. These proteins are well known for their ability to interact with the tumor suppressor p53 or members of the retinoblastoma family of proteins including pRb, p107, and p130, respectively (3, 17, 41). In addition to p53, HR-HPV E6 (HR-E6) binds to a number of cellular proteins involved in various aspects of cell proliferation and virus survival (reviewed in references 34 and 53). Our laboratory has reported that E6 binds to key mediators of the apoptotic pathway including tumor necrosis factor (TNF) R1 (22), the FADD death effector domain (DED) (21), and the procaspase 8 DED (20) and, in doing so, impedes apoptosis from taking place.As noted above, HR-E6 binds to TNF R1, blocking the adaptor molecule TRADD from binding to the membrane receptor. Similarly, the binding of HR-E6 to the FADD DED, a molecule common to the TNF-, Fas L-, and TRAIL-mediated extrinsic pathways of apoptosis, leads to the accelerated degradation of FADD and thereby inhibits the binding of additional downstream molecules necessary for programmed cell death. Additionally, we have reported that HR-E6 binds to procaspase 8, another molecule common to all three receptor-mediated pathways. The importance of procaspase 8 can be demonstrated by the many proteins produced by viruses to either inactivate or inhibit this apoptotic mediator in order to evade clearance by the host immune response. Such proteins include the herpes simplex virus R1 subunit that interferes with caspase 8 activation (31); the molluscum contagiosum virus MC159 protein that binds to the DEDs of both FADD and procaspase 8, thereby inhibiting their interaction (25); the human herpesvirus 8 FLICE protein that obstructs procaspase 8 cleavage and prevents its activation (4); and the cowpox virus serpin CrmA, which, along with the human cytomegalovirus UL136 proteins, inhibits caspase 8 activation (50, 56). In a like manner, HR-HPV16 produces the early protein E6 that binds to procaspase 8. Interestingly, however, we have found that the two splice products of the E6 gene, E6large, a protein of about 16 kDa, and E6*, a protein less than half the size of E6large, bind to and affect procaspase 8 stability differentially. While the large isoform accelerates the degradation of procaspase 8, leading to its destabilization, the short isoform leads to the stabilization of protein expression and an increase in activity. These observations suggest that the bindings of these two E6 isoforms have different functional consequences and may well localize to different regions on procaspase 8.We have previously identified a novel E6 binding site on the FADD DED (54). Based on sequence comparisons between the DEDs of FADD and procaspase 8, we proposed that the binding motif that mediates oncoprotein binding to both proteins would be similar. To test this possibility, we performed a series of mutational and peptide competitor-based experiments and discovered that the motifs on caspase 8 and on FADD that mediate binding between E6 and its cellular partner are indeed similar. Interestingly, however, the motif by which E6* binds to procaspase 8 is located in another region of the protein. These findings provide a molecular explanation for our previously reported observations concerning the differential effects of the binding of each isoform to the procaspase 8 DED. These findings also demonstrate the ability of peptide inhibitors to successfully impair E6 binding to its cellular targets and contribute to the discovery of therapeutic agents that are effective against cervical cancer.  相似文献   
39.
The paper describes the unique qualities of the collection of ixodoid ticks kept at the Zoological Institute RAS (St. Petersburg), which distinguish it among the world collections: the presence of representative geographic series within the species ranges, comprising all the active development stages. The fundamental and applied results achieved based on the properties of this collection are briefly summarized. Its contribution to the studies of different aspects of natural nidality of ticks is analyzed. The topical lines of research conducted on the basis of the collection at present and in future are considered.  相似文献   
40.
Morphological inversions during the ontogenesis of the ixodid ticks consist in the deranges of species-specific tendencies in the development of some external structures by the female line. The inversions, which included a wide range of organs and their fine structures, have been described for the first time in 14 species of 4 from 7 Palearctic ixodid genera. Emphasis is placed on the study of the structures, which serve as differential characters for closely related species. It is shown, that the using of the structures subjected to inversions is unavoidable in systematics because of the great similarity of closely related species, especially in immature stages. It is established by the data on the variability of all active stages in the species distribution ranges, that the degree of the inversions manifestation may somewhat fluctuate in different subspecies or geographic morphotypes of the same species, but the peculiarity of the inversions always remains a species-specific character. The cause of inversions origin is the evolution of the Ixodidae by the way of morpho-ecological specialization, namely hypertrophic, giantism, the growth of teguments in the period of nutrition act by pasture ambushing, which led to the derange of the development coordination of the organs during ontogenesis. Biological implication of the inversions is a guarantee of the adaptive potential of species during the process of microevolution. Even though the inversions make identification of closely related species difficult, their substantial importance is that they form integral species-specific character for the whole active part of the species ontogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号