首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   92篇
  国内免费   1篇
  2023年   9篇
  2022年   20篇
  2021年   39篇
  2020年   16篇
  2019年   20篇
  2018年   32篇
  2017年   38篇
  2016年   31篇
  2015年   60篇
  2014年   49篇
  2013年   63篇
  2012年   83篇
  2011年   93篇
  2010年   58篇
  2009年   45篇
  2008年   41篇
  2007年   57篇
  2006年   53篇
  2005年   53篇
  2004年   39篇
  2003年   39篇
  2002年   37篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   10篇
  1985年   4篇
  1984年   10篇
  1982年   7篇
  1979年   10篇
  1978年   12篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1971年   2篇
  1970年   3篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1143条查询结果,搜索用时 31 毫秒
121.
Fhit protein is the product of the putative tumor suppressor fragile histidine triad (FHIT) gene. The way by which Fhit exerts its antitumor activity remains largely unknown, although the Fhit-Ap3A complex is believed to be the native signaling form of Fhit. Here, we have shown that Fhit protein interacts with hUbc9, a recombinant human SUMO-1 conjugating enzyme, in an adenosine(5')triphospho(5')nucleoside (Ap3N)-dependent manner. Our experiments showed that the dinucleoside polyphosphate hydrolase activity of Fhit is suppressed by interacting with hUbc9 protein. In the presence of equimolar hUbc9 the Vmax and Km activity of Fhit was decreased by 35%. Analysis of Fhit kinetics in the presence of different fixed concentrations of Ubc9 showed that Ubc9 is an uncompetitive inhibitor. Including SUMO-1 protein in the assay neither affected the Fhit activity nor modified the effect of Ubc9 on Fhit kinetics. Our data suggest that hUbc9-induced inhibition of Fhit may result in an elongation of the Fhit-Ap3A signaling complex lifetime leading to alteration of its antitumor activity.  相似文献   
122.
In this study, we analyzed the hemolymph proteome of Drosophila third instar larvae, which were induced with a suspension of Gram-positive bacteria or yeast. Profiling of the hemolymph proteins of infected versus non-infected larvae was performed by two-dimensional difference gel electrophoresis. Infection with Micrococcus luteus or Saccharomyces cerevisiae induced, respectively, 20 and 19 differential protein spots. The majority of the spots are specifically regulated by one pathogen, whereas only a few spots correspond to proteins altered in all cases of challenging (including after challenge with lipopolysaccharides). All of the upregulated proteins can be assigned to specific aspects of the immune system, as they did not increase in the hemolymph of sterile pricked larvae. Next to known immune proteins, unannotated proteins were identified such as CG4306 protein, which has homologues with unknown function in all metazoan genome databases available today.  相似文献   
123.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA.  相似文献   
124.
Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome.  相似文献   
125.
Urobilinoids belong to the heterogenous group of degradation products of bilirubin formed in the gastrointestinal tract by intestinal microflora. Among them urobilinogen and stercobilinogen with their respective oxidation products, urobilin and stercobilin, are the most important compounds. The aim of present study was to analyze the products of bacterial reduction of bilirubin in more detail. The strain of Clostridium perfringens isolated from neonatal stools, capable of reducing bilirubin, was used in the study. Bacteria were incubated under anaerobic conditions with various native as well as synthetic bile pigments, including radiolabeled unconjugated bilirubin (UCB). Their reduction products were extracted from media and separated following thin layer chromatography. Pigments isolated were analyzed by spectrophotometry, spectrofluorometry and mass spectrometry. In a special set of experiments, bilirubin diglucuronide was incubated with either bacterial lysate or partially purified bilirubin reductase and beta-glucuronidase to reveal whether bilirubin glucuronides may be directly reduced onto conjugated urobilinoids. A broad substrate activity was detected in the investigated strain of C. perfringens and a series of bilirubin reduction products was identified. These products were separated in the form of their respective chromogens and further oxidized. Based on their physical-chemical properties, as well as mass spectra, end-catabolic bilirubin products were identified to belong to urobilinogen species. The reduction process, catalyzed enzymatically by the studied bacterial strain, does not proceed to stercobilinogen. Bilirubin diglucuronide is not reduced onto urobilinoid conjugates, glucuronide hydrolysis must precede double bond reduction and thus UCB is reduced much faster.  相似文献   
126.
We suggest a method for the reproducible and efficient capillary isoelectric focusing of proteins and microorganisms in the pH gradient 3-10. The method involves the segmental injection of the simple ampholytes, the solution of the selected electrolytes, and the sample mixture of bioanalytes and carrier ampholytes to the fused silica capillaries dynamically modified by poly(ethylene glycol), PEG 4000, which is added to the catholyte, the anolyte and injected solutions. In order to receive the reproducible results, the capillaries were rinsed by the mixture of acetone/ethanol between analyses. For the tracing of the pH gradients the low-molecular-mass pI markers were used. The simple proteins and the mixed cultures of microorganisms, Saccharomyces cerevisiae CCM 8191, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Staphylococcus aureus, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224, Staphylococcus epidermidis CCM 4418 and Stenotrophomonas maltophilia, were focused and separated by the method suggested. The minimum detectable number of microbial cells was 5x10(2) to 1x10(3) with on-column UV detection at 280 nm.  相似文献   
127.
Observation of immune and stem cells in their native microenvironments requires the development of imaging agents to allow their in vivo tracking. We describe here the synthesis of magnetofluorescent nanoparticles for cell labeling in vitro and for multimodality imaging of administered cells in vivo. MION-47, a prototype monocrystalline iron oxide nanoparticle, was first converted to an intermediate bearing a fluorochrome and amine groups, then reacted with either HIV-Tat peptide or protamine to yield a nanoparticle with membrane-translocating properties. We describe how to assess optimal cell labeling with tests of cell phenotype and function. Synthesis of magnetofluorescent nanoparticles and cell-labeling optimization can be realized in 48 h, whereas nanoparticle uptakes and retention studies may generally take up to 120 h. Labeled cells can be detected by magnetic resonance imaging, fluorescence reflectance imaging, fluorescence-mediated tomography, confocal microscopy and flow cytometry, and can be purified based on their fluorescent or magnetic properties. The present protocol focuses on T-cell labeling but can be used for labeling a variety of circulating cells.  相似文献   
128.
129.
The biological effects of drug vehicles are often overlooked, often leading to artifacts in acetaminophen-induced liver injury assessment. Therefore, we decided to investigate the effect of dimethylsulfoxide, dimethylformamide, propylene glycol, ethanol, and Tween 20 on acetaminophen-induced liver injury. C57BL/6 male mice received a particular drug vehicle (0.6 or 0.2 mL/kg, i.p.) 30 min before acetaminophen administration (300 mg/kg, i.p.). Control mice received vehicle alone. Liver injury was assessed by measuring the concentration of alanine aminotransferase in plasma and observing histopathological changes. The level of reduced glutathione (GSH) was assessed by measuring total nonprotein hepatic sulfhydrils. Dimethylsulfoxide and dimethylformamide (at both doses) almost completely abolished acetaminophen toxicity. The higher dose of propylene glycol (0.6 mL/kg) was markedly protective, but the lower dose (0.2 mL/kg) was only slightly protective. These solvents also reduced acetaminophen-induced GSH depletion. Dimethylformamide was protective when given 2 h before or 1 h after acetaminophen administration, but was ineffective if given 2.5 h after acetaminophen. Ethanol at the higher dose (0.6 mL/kg) was partially protective, whereas ethanol at the lower dose (0.2 mL/kg) as well as Tween 20 at any dose had no influence. None of the vehicles (0.6 mL/kg) was hepatotoxic per se, and none of them was protective in a model of liver injury caused by D-galactosamine and lipopolysaccharide.  相似文献   
130.
Porcine respiratory coronavirus (PRCV) potentiates respiratory disease and proinflammatory cytokine production in the lungs upon intratracheal inoculation with lipopolysaccharide (LPS) at 1 day of infection. This study aimed to quantify LPS-binding protein (LBP), CD14 and haptoglobin in the lungs throughout a PRCV infection. LBP and CD14 recognize LPS and enhance its endotoxic activity, whereas haptoglobin dampens it. Gnotobiotic pigs were inoculated intratracheally with PRCV (n = 34) or saline (n = 5) and euthanized 1-15days post inoculation (DPI). Virus was detected in the lungs from 1 to 9DPI. Cell-associated CD14 in lung tissue increased up to 15 times throughout the infection, due to an increase in highly CD14+ monocyte-macrophages from 1 to 12DPI and CD14+ type 2 pneumocytes from 7 to 9DPI. LBP and soluble CD14 levels in bronchoalveolar lavage fluids were elevated from 1-12DPI, with up to 35- and 4-fold increases, respectively. Haptoglobin levels increased significantly (x4.5) at 7DPI. In addition, we found that PRCV could sensitize the lungs to LPS throughout the infection, but the response to LPS appeared less enhanced at the end of infection (7DPI). The marked increases in LBP, CD14 and haptoglobin were not correlated with the extent of the LPS response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号