首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   15篇
  96篇
  2023年   3篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1977年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
71.
72.
73.
Multiple evidence of positive relationships between nice breadth and range size (NB–RS) suggested that this can be a general ecological pattern. However, correlations between niche breadth and range size can emerge as a by-product of strong spatial structure of environmental variables. This can be problematic because niche breadth is often assessed using broad-scale macroclimatic variables, which suffer heavy spatial autocorrelation. Microhabitat measurements provide accurate information on species tolerance, and show limited autocorrelation. The aim of this study was to combine macroclimate and microhabitat data to assess NB–RS relationships in European plethodontid salamanders (Hydromantes), and to test whether microhabitat variables with weak autocorrelation can provide less biased NB–RS estimates across species. To measure macroclimatic niche, we gathered comprehensive information on the distribution of all Hydromantes species, and combined them with broad-scale climatic layers. To measure microhabitat, we recorded salamander occurrence across > 350 caves and measured microhabitat features influencing their distribution: humidity, temperature and light. We assessed NB–RS relationships through phylogenetic regression; spatial null-models were used to test whether the observed relationships are a by-product of autocorrelation. We observed positive relationships between niche breadth and range size at both the macro- and microhabitat scale. At the macroclimatic scale, strong autocorrelation heavily inflated the possibility to observe positive NB–RS. Spatial autocorrelation was weaker for microhabitat variables. At the microhabitat level, the observed NB–RS was not a by-product of spatial structure of variables. Our study shows that heavy autocorrelation of variables artificially increases the possibility to detect positive relationships between bioclimatic niche and range size, while fine-scale data of microhabitat provide more direct measure of conditions selected by ectotherms, and enable less biased measures of niche breadth. Combining analyses performed at multiple scales and datasets with different spatial structure provides more complete niche information and effectively tests the generality of niche breadth–range size relationships.  相似文献   
74.
75.
A recent paper has suggested that NA2RE, the New Atlas of Amphibians and Reptiles of Europe, does not provide a reliable basis for ecological niche modelling studies due to errors flagging introductions and missing data for the native range of the pond turtle genus Emys. We point out that the original NA2RE paper already acknowledged that it was not aimed for fine-scale ecological distribution modelling and that it had the objective of stimulating research for improving the maps. New works now complement the Atlas in improving the coverage and providing new distribution maps for species within species complex. Moreover, we stress that the NA2RE web platform at present hosts only the distribution data compiled in 2014 from different sources, using the taxonomy adopted by the authors at the time. As with any large database, it is advisable that these data are carefully evaluated and quality-filtered before their use in scientific studies. We defend the reliability of the NA2RE web platform as the currently most comprehensive resource for the comparative chorological study of amphibians and reptiles in Europe, and encourage publication of updates and additions following the most recent taxonomic changes, to continuously improve this database and the Atlas.  相似文献   
76.

Background

Malaria is a major public health problem in Cameroon. Unlike in the southern forested areas where the epidemiology of malaria has been better studied prior to the implementation of control activities, little is known about the distribution and role of anophelines in malaria transmission in the coastal areas.

Methods

A 12-month longitudinal entomological survey was conducted in Tiko, Limbe and Idenau from August 2001 to July 2002. Mosquitoes captured indoors on human volunteers were identified morphologically. Species of the Anopheles gambiae complex were identified using the polymerase chain reaction (PCR). Mosquito infectivity was detected by the enzyme-linked immunosorbent assay and PCR. Malariometric indices (plasmodic index, gametocytic index, parasite species prevalence) were determined in three age groups (<5 yrs, 5–15 yrs, >15 yrs) and followed-up once every three months.

Results

In all, 2,773 malaria vectors comprising Anopheles gambiae (78.2%), Anopheles funestus (17.4%) and Anopheles nili (7.4%) were captured. Anopheles melas was not anthropophagic. Anopheles gambiae had the highest infection rates. There were 287, 160 and 149 infective bites/person/year in Tiko, Limbe and Idenau, respectively. Anopheles gambiae accounted for 72.7%, An. funestus for 23% and An. nili for 4.3% of the transmission. The prevalence of malaria parasitaemia was 41.5% in children <5 years of age, 31.5% in those 5–15 years and 10.5% in those >15 years, and Plasmodium falciparum was the predominant parasite species.

Conclusion

Malaria transmission is perennial, rainfall dependent and An. melas does not contribute to transmission. These findings are important in the planning and implementation of malaria control activities in coastal Cameroon and West Africa.
  相似文献   
77.
Ophisops elegans, a common lizard with a wide distribution range in Iran, was selected to investigate the influence of environmental factors on its distribution pattern. Based on a distribution model developed with the software Maxent for O. elegans, the most important factors influencing the distribution pattern were found to be high winter precipitation, intermediate levels of Normalized Difference Vegetation Index (NDVI) and intermediate levels of sunshine. It seems that overall plant cover and competition with Mesalina watsonana are the main factors which influence the distribution pattern of O. elegans in the central Iranian Plateau.  相似文献   
78.

Aim

Although the effects of life history traits on population density have been investigated widely, how spatial environmental variation influences population density for a large range of organisms and at a broad spatial scale is poorly known. Filling this knowledge gap is crucial for global species management and conservation planning and to understand the potential impact of environmental changes on multiple species.

Location

Global.

Time period

Present.

Major taxa studied

Terrestrial amphibians, reptiles, birds and mammals.

Methods

We collected population density estimates for a range of terrestrial vertebrates, including 364 estimates for amphibians, 850 for reptiles, 5,667 for birds and 7,651 for mammals. We contrasted the importance of life history traits and environmental predictors using mixed models and tested different hypotheses to explain the variation in population density for the four groups. We assessed the predictive accuracy of models through cross‐validation and mapped the partial response of vertebrate population density to environmental variables globally.

Results

Amphibians were more abundant in wet areas with high productivity levels, whereas reptiles showed relatively higher densities in arid areas with low productivity and stable temperatures. The density of birds and mammals was typically high in temperate wet areas with intermediate levels of productivity. The models showed good predictive abilities, with pseudo‐R2 ranging between 0.68 (birds) and 0.83 (reptiles).

Main conclusions

Traits determine most of the variation in population density across species, whereas environmental conditions explain the intraspecific variation across populations. Species traits, resource availability and climatic stability have a different influence on the population density of the four groups. These models can be used to predict the average species population density over large areas and be used to explore macroecological patterns and inform conservation analyses.  相似文献   
79.
80.
Both postglacial colonization and habitat fragmentation can reduce the genetic diversity of populations, which in turn can affect fitness. However, since these processes occur at different spatial and temporal scales, the consequences of either process may differ. To disentangle the relative role of isolation and postglacial colonization in determining genetic diversity and fitness, we studied microsatellite diversity of 295 individuals from 10 populations and measured the hatch rate of 218 clutches from eight populations of a threatened frog, R. latastei. The populations that were affected by fragmentation to a greater extent suffered higher embryo mortality and reduced hatch rate, while no effects of distance from glacial refugium on hatch rate were detected. Altogether, distance from glacial refugium and isolation explained > 90% of variation in genetic diversity. We found that the genetic diversity was lowest in populations both isolated and far from the glacial refugium, and that distance from refugium seems to have the primary role in determining genetic diversity. The relationship between genetic diversity and hatch rate was not significant. However, the proportion of genetic diversity lost through recent isolation had a significant, negative effect on fitness. It is possible that selection at least partially purged the negative effects of the ancestral loss of genetic diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号