首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   13篇
  164篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   14篇
  2012年   4篇
  2011年   13篇
  2010年   6篇
  2009年   4篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
151.
152.
Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units.  相似文献   
153.
Plant vacuoles play several roles in controlling development, pathogen defence, and stress response. γVPE is a vacuolarlocalised cysteine protease with a caspase-1 like activity involved in the activation and maturation of downstream vacuolar hydrolytic enzymes that trigger hypersensitive cell death and tissue senescence. This work provides evidence that γVPE is strongly expressed in Arabidopsis guard cells and is involved in water stress response. The γvpe knock-out mutants showed reduced stomatal opening and an increased resistance to desiccation suggesting a new role of γVPE in control of stomatal movements.  相似文献   
154.

Background

Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction.

Results

Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia.

Conclusion

We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.  相似文献   
155.
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.  相似文献   
156.
Environmental stressors have been recently shown to activate intracellular mitogen-activated protein (MAP) kinases, such as p38 MAP kinase, leading to changes in cellular functioning. However, little is known about the downstream elements in these signaling cascades. In this study, we show that caveolin-1 is phosphorylated on tyrosine 14 in NIH 3T3 cells after stimulation with a variety of cellular stressors (i.e. high osmolarity, H2O2, and UV light). To detect this phosphorylation event, we employed a phosphospecific monoclonal antibody probe that recognizes only tyrosine 14-phosphorylated caveolin-1. Since p38 MAP kinase and c-Src have been previously implicated in the stress response, we next assessed their role in the tyrosine phosphorylation of caveolin-1. Interestingly, we show that the p38 inhibitor (SB203580) and a dominant-negative mutant of c-Src (SRC-RF) both block the stress-induced tyrosine phosphorylation of caveolin-1 (Tyr(P)(14)). In contrast, inhibition of the p42/44 MAP kinase cascade did not affect the tyrosine phosphorylation of caveolin-1. These results indicate that extracellular stressors can induce caveolin-1 tyrosine phosphorylation through the activation of well established upstream elements, such as p38 MAP kinase and c-Src kinase. However, heat shock did not promote the tyrosine phosphorylation of caveolin-1 and did not activate p38 MAP kinase. Finally, we show that after hyperosmotic shock, tyrosine-phosphorylated caveolin-1 is localized near focal adhesions, the major sites of tyrosine kinase signaling. In accordance with this localization, disruption of the actin cytoskeleton dramatically potentiates the tyrosine phosphorylation of caveolin-1. Taken together, our results clearly define a novel signaling pathway, involving p38 MAP kinase activation and caveolin-1 (Tyr(P)(14)). Thus, tyrosine phosphorylation of caveolin-1 may represent an important downstream element in the signal transduction cascades activated by cellular stress.  相似文献   
157.
The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double‐strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA‐SCARS. Here, we developed a method, named ‘DNA damage in situ ligation followed by proximity ligation assay’ (DI‐PLA) for the detection and imaging of DSBs in cells. DI‐PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double‐stranded DNA oligonucleotides, which are next recognized by antibiotin anti‐bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI‐PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI‐PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.  相似文献   
158.
Discovery of the heat shock response   总被引:5,自引:0,他引:5       下载免费PDF全文
No Abstract Available  相似文献   
159.
160.
In Drosophila, temperature shocks lead to the activation of definite puffs and to the appearance of definite new polypeptides. The effects of deletions and triplications of region 93D, the site of one of the largest inducible puffs, on the induced pattern of polypeptides has been studied. A direct correlation between the dose of this chromosomal region and the relative amount of the major inducible polypeptide (about 72,000 MW) has been observed. Uninduced embryos show a low basal level of synthesis of a 72,000 MW polypeptide and this synthesis sharply increases after temperature shocks. Out of a cross which segregates zygotes completely lacking the inducible site of region 93D, embryos were found which show no increased synthesis of the 72,000 MW polypeptide after temperature shocks. The inducible 72,000 MW polypeptide is distinctly larger than the larger subunit (about 66,000 MW) of glutamine synthetase 1, which is also induced by temperature shocks and whose structural gene was shown to map also in this region. Possible explanations are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号