首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4589篇
  免费   456篇
  5045篇
  2024年   3篇
  2023年   32篇
  2022年   72篇
  2021年   158篇
  2020年   78篇
  2019年   92篇
  2018年   111篇
  2017年   116篇
  2016年   161篇
  2015年   285篇
  2014年   333篇
  2013年   323篇
  2012年   429篇
  2011年   393篇
  2010年   248篇
  2009年   208篇
  2008年   316篇
  2007年   261篇
  2006年   271篇
  2005年   243篇
  2004年   237篇
  2003年   183篇
  2002年   206篇
  2001年   43篇
  2000年   19篇
  1999年   28篇
  1998年   25篇
  1997年   23篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1954年   1篇
排序方式: 共有5045条查询结果,搜索用时 15 毫秒
61.
BackgroundAedes aegypti mosquito-borne viruses including Zika (ZIKV), dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV) have emerged and re-emerged globally, resulting in an elevated burden of human disease. Aedes aegypti is found worldwide in tropical, sub-tropical, and temperate areas. The characterization of mosquito blood meals is essential to understand the transmission dynamics of mosquito-vectored pathogens.Methodology/principal findingsHere, we report Ae. aegypti and Culex quinquefasciatus host feeding patterns and arbovirus transmission in Northern Mexico using a metabarcoding-like approach with next-generation deep sequencing technology. A total of 145 Ae. aegypti yielded a blood meal analysis result with 107 (73.8%) for a single vertebrate species and 38 (26.2%) for two or more. Among the single host blood meals for Ae. aegypti, 28.0% were from humans, 54.2% from dogs, 16.8% from cats, and 1.0% from tortoises. Among those with more than one species present, 65.9% were from humans and dogs. For Cx. quinquefasciatus, 388 individuals yielded information with 326 (84%) being from a single host and 63 (16.2%) being from two or more hosts. Of the single species blood meals, 77.9% were from dogs, 6.1% from chickens, 3.1% from house sparrows, 2.4% from humans, while the remaining 10.5% derived from other 12 host species. Among those which had fed on more than one species, 11% were from dogs and humans, and 89% of other host species combinations. Forage ratio analysis revealed dog as the most over-utilized host by Ae. aegypti (= 4.3) and Cx. quinquefasciatus (= 5.6) and the human blood index at 39% and 4%, respectively. A total of 2,941 host-seeking female Ae. aegypti and 3,536 Cx. quinquefasciatus mosquitoes were collected in the surveyed area. Of these, 118 Ae. aegypti pools and 37 Cx. quinquefasciatus pools were screened for seven arboviruses (ZIKV, DENV 1–4, CHIKV, and West Nile virus (WNV)) using qRT-PCR and none were positive (point prevalence = 0%). The 95%-exact upper limit confidence interval was 0.07% and 0.17% for Ae. aegypti and Cx. quinquefasciatus, respectivelyConclusions/significanceThe low human blood feeding rate in Ae. aegypti, high rate of feeding on mammals by Cx. quinquefasciatus, and the potential risk to transmission dynamics of arboviruses in highly urbanized areas of Northern Mexico is discussed.  相似文献   
62.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   
63.
64.
Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.  相似文献   
65.
66.
Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.  相似文献   
67.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
68.
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.  相似文献   
69.
For marine fish and invertebrates, larval dispersal plays a critical role in determining connections among source and sink habitats, and the lack of a predictive understanding of larval dispersal is a fundamental obstacle to the development of spatially explicit restoration plans for marine populations. We investigated larval dispersal patterns of eastern oyster in an estuary along the Northern Gulf of Mexico under different simulation scenarios of tidal amplitude and phase, river discharge, wind direction, and larval vertical migration, using a coupled biophysical transport model. We focused on the dispersal of larvae released from the commercially exploited (Cedar Point, CP) and non‐exploited (Bon Secour Bay, BSB) oyster populations. We found that high flushing rates through the dominant inlet prevented larval exchange between the commercially exploited and non‐exploited populations, resulting in negligible connectivity between them. Variations in tidal amplitude, river discharge and wind direction played a more important role in the amount of larvae retained in Mobile Bay when they are released from CP than from BSB. Under most of the scenarios, larvae from BSB were retained around the spawning area, while larvae from CP showed a predominant westward flow. Net sinking behavior of late‐stage larvae increased larval retention in the bay, but physical transport showed a higher impact in the amount of larvae retained. These findings have enhanced our understanding of larval dispersal of eastern oyster in a wide, shallow estuarine system, and been used to establish spatially explicit strategies for oyster restoration in the Mobile Bay system, Alabama.  相似文献   
70.
The purpose of this article is to describe and analyze the edTPA, a performance assessment created by the Stanford Center for Assessment, Learning, and Equity (SCALE) and administered by Pearson, Inc., to assess the professional readiness of student teachers. We challenge claims made in support of using this assessment, specifically within the context of arts teacher preparation programs, and we address areas of immediate critical concern to make alternative recommendations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号