首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5643篇
  免费   369篇
  6012篇
  2023年   21篇
  2022年   70篇
  2021年   104篇
  2020年   47篇
  2019年   86篇
  2018年   118篇
  2017年   99篇
  2016年   161篇
  2015年   237篇
  2014年   280篇
  2013年   428篇
  2012年   465篇
  2011年   461篇
  2010年   282篇
  2009年   214篇
  2008年   364篇
  2007年   356篇
  2006年   341篇
  2005年   331篇
  2004年   295篇
  2003年   241篇
  2002年   257篇
  2001年   63篇
  2000年   55篇
  1999年   61篇
  1998年   53篇
  1997年   39篇
  1996年   47篇
  1995年   39篇
  1994年   31篇
  1993年   42篇
  1992年   35篇
  1991年   20篇
  1990年   26篇
  1989年   23篇
  1988年   22篇
  1987年   21篇
  1986年   18篇
  1985年   16篇
  1984年   26篇
  1983年   18篇
  1982年   9篇
  1981年   18篇
  1980年   12篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1976年   4篇
  1973年   4篇
  1971年   5篇
排序方式: 共有6012条查询结果,搜索用时 0 毫秒
161.
Milk is one of the most important nutrients for humans during lifetime. Farm animal milk in all its products like cheese and other fermentation and transformation products is a widespread nutrient for the entire life of humans. Proteins are key molecules of the milk functional component repertoire and their investigation represents a major challenge. Proteins in milk, such as caseins, contribute to the formation of micelles that are different from species to species in dimension and casein-type composition; they are an integral part of the MFGM (Milk Fat Globule Membrane) that has being exhaustively studied in recent years. Milk proteins can act as enzymes or have an antimicrobial activity; they could act as hormones and, last but not least, they have a latent physiological activity encoded in their primary structure that turns active when the protein is cleaved by fermentation or digestion processes. In this review we report the last progress in proteomics, peptidomics and bioinformatics. These new approaches allow us to better characterize the milk proteome of farm animal species, to highlight specific PTMs, the peptidomic profile and even to predict the potential nutraceutical properties of the analyzed proteins.  相似文献   
162.
Hypoxia‐dependent accumulation of vascular endothelial growth factor (VEGF) plays a major role in retinal diseases characterized by neovessel formation. In this study, we investigated whether the glial water channel Aquaporin‐4 (AQP4) is involved in the hypoxia‐dependent VEGF upregulation in the retina of a mouse model of oxygen‐induced retinopathy (OIR). The expression levels of VEGF, the hypoxia‐inducible factor‐1α (HIF‐1α) and the inducible form of nitric oxide synthase (iNOS), the production of nitric oxide (NO), the methylation status of the HIF‐1 binding site (HBS) in the VEGF gene promoter, the binding of HIF‐1α to the HBS, the retinal vascularization and function have been determined in the retina of wild‐type (WT) and AQP4 knock out (KO) mice under hypoxic (OIR) or normoxic conditions. In response to 5 days of hypoxia, WT mice were characterized by (i) AQP4 upregulation, (ii) increased levels of VEGF, HIF‐1α, iNOS and NO, (iii) pathological angiogenesis as determined by engorged retinal tufts and (iv) dysfunctional electroretinogram (ERG). AQP4 deletion prevents VEGF, iNOS and NO upregulation in response to hypoxia thus leading to reduced retinal damage although in the presence of high levels of HIF‐1α. In AQP4 KO mice, HBS demethylation in response to the beginning of hypoxia is lower than in WT mice reducing the binding of HIF‐1α to the VEGF gene promoter. We conclude that in the absence of AQP4, an impaired HBS demethylation prevents HIF‐1 binding to the VEGF gene promoter and the relative VEGF transactivation, reducing the VEGF‐induced retinal damage in response to hypoxia.  相似文献   
163.
KSRP is a single strand nucleic acid binding protein that controls gene expression at multiple levels. In this review we focus on the recent molecular, cellular, and structural insights into the mRNA decay promoting function of KSRP. We discuss also some aspects of KSRP-dependent microRNA maturation from precursors that are related to its mRNA destabilizing function. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   
164.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   
165.
Site-specific integration and excision of pMEA100 in Nocardia mediterranei   总被引:5,自引:0,他引:5  
Summary Nocardia mediterranei strain LBG A3136 contains the 23.7 kb element pMEA100 in a chromosomally integrated form as well as in the free state (Moretti et al. 1985). The integrated form of this element can be excised precisely from the Nocardia chromosome without any accompanying rearrangements in flanking chromosomal DNA. After transfer into plasmid-free mutant strains, pMEA100 reintegrates site specifically into its original chromosomal locus. The exact mapping of the pMEA100 integration site was accomplished by restriction analysis and DNA sequencing. The attachment site of pMEA100, the junctions of its integrated form and plasmid-free chromosomal DNA of N. mediterranei contain an identical 47 bp long sequence which is probably required for site-specific recombination connected with integration and excision of pMEA100. Only one such sequence was found in the chromosome of pMEA100-free N. mediterranei derivatives as suggested by the single integration locus.  相似文献   
166.
167.
Disruption of the apoptotic pathways may account for resistance to chemotherapy and treatment failures in human neoplastic disease. To further evaluate this issue, we isolated a HL-60 cell clone highly resistant to several drugs inducing apoptosis and to the differentiating chemical all-trans-retinoic acid (ATRA). The resistant clone displayed an activated phosphoinositide 3-kinase (PI3K)/AKT1 pathway, with levels of phosphatidylinositol (3,4,5) trisphosphate higher than the parental cells and increased levels of both Thr 308 and Ser 473 phosphorylated AKT1. In vitro AKT1 activity was elevated in resistant cells, whereas treatment of the resistant cell clone with two inhibitors of PI3K, wortmannin or Ly294002, strongly reduced phosphatidylinositol (3,4,5) trisphosphate levels and AKT1 activity. The inhibitors reversed resistance to drugs. Resistant cells overexpressing either dominant negative PI3K or dominant negative AKT1 became sensitive to drugs and ATRA. Conversely, if parental HL-60 cells were forced to overexpress an activated AKT1, they became resistant to apoptotic inducers and ATRA. There was a tight relationship between the activation of the PI3K/AKT1 axis and the expression of c-IAP1 and c-IAP2 proteins. Activation of the PI3K/AKT1 axis in resistant cells was dependent on enhanced tyrosine phosphorylation of the p85 regulatory subunit of PI3K, conceivably due to an autocrine insulin-like growth factor-I production. Our findings suggest that an up-regulation of the PI3K/AKT1 pathway might be one of the survival mechanisms responsible for the onset of resistance to chemotherapeutic and differentiating therapy in patients with acute leukemia.  相似文献   
168.
169.
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV–Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2′-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号