首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4878篇
  免费   323篇
  2023年   23篇
  2022年   45篇
  2021年   101篇
  2020年   52篇
  2019年   92篇
  2018年   93篇
  2017年   95篇
  2016年   130篇
  2015年   194篇
  2014年   229篇
  2013年   332篇
  2012年   439篇
  2011年   378篇
  2010年   233篇
  2009年   201篇
  2008年   324篇
  2007年   296篇
  2006年   309篇
  2005年   250篇
  2004年   265篇
  2003年   245篇
  2002年   174篇
  2001年   54篇
  2000年   42篇
  1999年   41篇
  1998年   62篇
  1997年   42篇
  1996年   51篇
  1995年   37篇
  1994年   29篇
  1993年   25篇
  1992年   29篇
  1991年   33篇
  1990年   14篇
  1989年   19篇
  1988年   19篇
  1987年   10篇
  1986年   14篇
  1985年   15篇
  1984年   18篇
  1983年   12篇
  1982年   20篇
  1981年   14篇
  1980年   10篇
  1979年   16篇
  1978年   16篇
  1976年   8篇
  1974年   7篇
  1971年   7篇
  1941年   4篇
排序方式: 共有5201条查询结果,搜索用时 15 毫秒
131.
Oxidative stress is considered the common effector of the cascade of degenerative events in many neurological conditions. Thus, in this paper we tested different nutraceuticals in H2O2 in vitro model to understand if could represent an adjuvant treatment for neurological diseases. In this study, nutraceuticals bacopa, lycopene, astaxanthin, and vitamin B12 were used alone or in combination in human neuronal differentiated SH-SY5Y cells upon hydrogen peroxide-induced injury and neuroprotective, neuronal death pathways were analyzed. The nutraceuticals analyzed were able to protect H2O2 cytotoxic effects, through increasing cell viability and proteins involved in neuroprotection pathways and restoring proteins involved in cell death pathways. On this basis, it is possible to propose the use of these compounds as dietary supplement for the prevention or as adjuvant to the only symptomatic treatments so far available for neurodegenerative diseases.  相似文献   
132.
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror‐symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.  相似文献   
133.
Fibroblast growth factor (FGF)-induced growth arrest of chondrocytes is a unique cell type-specific response which contrasts with the proliferative response of most cell types and underlies several genetic skeletal disorders caused by activating FGF receptor (FGFR) mutations. We have shown that one of the earliest key events in FGF-induced growth arrest is dephosphorylation of the retinoblastoma protein (Rb) family member p107 by protein phosphatase 2A (PP2A), a ubiquitously expressed multisubunit phosphatase. In this report, we show that the PP2A-B55α holoenzyme (PP2A containing the B55α subunit) is responsible for this phenomenon. Only the B55α (55-kDa regulatory subunit, alpha isoform) regulatory subunit of PP2A was able to bind p107, and this interaction was induced by FGF in chondrocytes but not in other cell types. Small interfering RNA (siRNA)-mediated knockdown of B55α prevented p107 dephosphorylation and FGF-induced growth arrest of RCS (rat chondrosarcoma) chondrocytes. Importantly, the B55α subunit bound with higher affinity to dephosphorylated p107. Since the p107 region interacting with B55α is also the site of cyclin-dependent kinase (CDK) binding, B55α association may also prevent p107 phosphorylation by CDKs. FGF treatment induces dephosphorylation of the B55α subunit itself on several serine residues that drastically increases the affinity of B55α for the PP2A A/C dimer and p107. Together these observations suggest a novel mechanism of p107 dephosphorylation mediated by activation of PP2A through B55α dephosphorylation. This mechanism might be a general signal transduction pathway used by PP2A to initiate cell cycle arrest when required by external signals.  相似文献   
134.
Brain cholesterol is mainly involved in the cell membrane structure, in signal transduction, neurotransmitter release, synaptogenesis and membrane trafficking. Impairment of brain cholesterol metabolism was described in neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer and Huntington Diseases. Since the blood–brain barrier efficiently prevents cholesterol uptake from the circulation into the brain, de novo synthesis is responsible for almost all cholesterol present there. Cholesterol is converted into 24S-hydroxycholesterol (24OHC) by cholesterol 24-hydroxylase (CYP46A1) expressed in neural cells.  相似文献   
135.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   
136.
Protein fractions obtained by filtration of crude extracts of roots from the sacculinid parasite Loxothylacus panopei were tested by repeated injections on healthy male crabs Rhithropanopeus harrisii, the usual host of the rhizocephalan. Testes, and rogenic glands and different parts of the host CNS were observed; the behaviour of the animals was also noted. For the first time, proteinaceous substance(s) of about 25000–30000 daltons were characterized. They induce inhibition of spermatogenesis, and rogenic gland cytolysis and depletion of the sinus gland as in naturally infested crabs. The mode of action of sacculinid on spermatogenesis in the host is discussed.  相似文献   
137.
138.
Abstract

Proteins with the ability to specifically bind strontium would potentially be of great use in the field of nuclear waste management. Unfortunately, no such peptides or proteins are known—indeed, it is uncertain whether they exist under natural conditions due to low environmental concentrations of strontium. To investigate the possibility of devising such molecules, one of us (CV), in a previous experimental study [J. Biol. Inorg. Chem. 8, 33440 (2003)], proposed starting from an EF-hand motif of the protein calmodulin and mutating some residues to change the motif's specificity for calcium into one for strontium. In this paper, which represents a theoretical complement to the experimental work, we analyzed small-molecule crystallographic structures and performed quantum chemical calculations to identify possible mutations. We then constructed seven mutant sequences of the EF-hand motif and analyzed their dynamical and binding behaviors using molecular dynamics simulations and free-energy calculations (using the MM/PBSA method). As a result of these analyzes we were able to isolate some characteristics that could lead to mutant peptides with enhanced strontium affinity.  相似文献   
139.
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD‐affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD. J. Cell. Biochem. 114: 7–20, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号