首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   76篇
  765篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   11篇
  2018年   13篇
  2017年   6篇
  2016年   16篇
  2015年   35篇
  2014年   49篇
  2013年   41篇
  2012年   60篇
  2011年   54篇
  2010年   36篇
  2009年   26篇
  2008年   42篇
  2007年   46篇
  2006年   33篇
  2005年   35篇
  2004年   35篇
  2003年   33篇
  2002年   32篇
  2001年   16篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1972年   3篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1966年   3篇
  1957年   2篇
排序方式: 共有765条查询结果,搜索用时 15 毫秒
91.
Effect of reserpine on body weight (BW), feed intake (FI), brain and plasma catecholamine and indoleamine concentrations in high- (HWS) and low- (LWS) weight selected lines of chickens was investigated. Chicks from each line were assigned to three treatment groups and injected intraperitoneally with 0, 1.25, or 2.50 mg/kg of reserpine at hatch, and again at 5 weeks-of-age. Chick BW and FI were determined weekly. At 7 weeks-of-age, 12 males and females from each group were sacrificed for neurotransmitter analysis. In the HWS line there was a dose-dependent decrease in BW through 7 weeks-of-age, whereas in the LWS line BW decreased only through the first 2 weeks-of-age. In the LWS line, norepinephrine (NE), epinephrine, and 3,4-dihydroxyphenylacetate concentrations decreased in the brain in a linear and quadratic manner in response to reserpine, but not in the HWS line. Both lines showed linear decreases in dopamine levels in response to reserpine; however, serotonin was not affected by reserpine. Chickens in the HWS line had greater plasma NE, and lower 5-hydroxyindoleacetic acid than those in the LWS line. In conclusion, it appears that chickens from the HWS line were more sensitive to the BW reducing effects of reserpine than those from the LWS line, with the latter appearing to have greater sympathetic nervous system activity.  相似文献   
92.
93.
Studies of telomeres and telomere biology often critically rely on the detection of telomeric DNA and measurements of the length of telomere repeats in either single cells or populations of cells. Several methods are available that provide this type of information and it is often not clear what method is most appropriate to address a specific research question. The major variables that need to be considered are the material that is or can be made available and the accuracy of measurements that is required. The goal of this review is to provide a comprehensive summary of the most commonly used methods and discuss the advantages and disadvantages of each. Methods that start with genomic DNA include telomere restriction fragment (TRF) length analysis, PCR amplification of telomere repeats relative to a single copy gene by Q-PCR or MMQPCR and single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. A different set of methods relies on fluorescent in situ hybridization (FISH) to detect telomere repeats in individual cells or chromosomes. By including essential calibration steps and appropriate controls these methods can be used to measure telomere repeat length or content in chromosomes and cells. Such methods include quantitative FISH (Q-FISH) and flow FISH which are based on digital microscopy and flow cytometry, respectively. Here the basic principles of various telomere length measurement methods are described and their strengths and weaknesses are highlighted. Some recent developments in telomere length analysis are also discussed. The information in this review should facilitate the selection of the most suitable method to address specific research question about telomeres in either model organisms or human subjects.  相似文献   
94.
95.
The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg?1 were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.  相似文献   
96.
Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form supra-molecular structures called podosome belts or sealing zones on mineralized substrates. Podosomes contain two distinct domains, an actin-rich core enriched in actin polymerization regulators, surrounded by a ring of signaling and plaque molecules. The organization of podosome arrays into belts is linked to actin dynamics. Cofilin is an actin-severing protein that is known to regulate cytoskeleton architecture and cell migration. Cofilin is present in lamellipodia and invadopodia where it regulates actin polymerization. In this report, we show that cofilin is a novel component of the podosome belt, the mature osteoclast adhesion structure. Time-course analysis demonstrated that cofilin is activated during primary osteoclast differentiation, at the time of podosome belt assembly. Immunofluorescence studies reveal a localization of active cofilin in the podosome core structure, whereas phosphorylated, inactive cofilin is concentrated in the podosome cloud. Pharmacological studies unraveled the role of a specific cofilin phosphatase to achieve cofilin activation during osteoclast differentiation. We ruled out the implication of PP1/PP2A and PTEN in this process, and rather provided evidence for the involvement of SSH1. In summary, our data involve cofilin as a regulator of podosome organization that is activated during osteoclast differentiation by a RANKL-mediated signaling pathway targeting the SSH1 phosphatase.  相似文献   
97.
Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.  相似文献   
98.
99.
Caspase (Casp) family proteases regulate not only lymphocyte apoptosis but also lymphocyte activation and development. In this study, we show that Casp6 regulates B cell activation and differentiation into plasma cells by modifying cell cycle entry. B cells from Casp6 knockout (Casp6 KO) mice examined ex vivo have more cells in G(1) than wild-type B cells, and mitogen-induced G(1) entry of Casp6 KO B cells is much faster than that of wild-type B cells. Even so, S phase entry and proliferation are not increased in Casp6 KO B cells. Rather than proliferating, activated Casp6 KO B cells preferentially differentiate into syndecan-1(+) plasma cells and produce Abs. In Casp6 KO mice compared with WT mice, serum levels of IgG1, IgG2a, and IgG2b are increased and Ag-specific Ab responses are also enhanced along with increased percentages of syndecan-1(+) plasma cells. Casp6 may regulate both B cell activation and differentiation by modifying requirements for G(0) B cells to enter G(1).  相似文献   
100.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号