首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10290篇
  免费   691篇
  国内免费   3篇
  10984篇
  2023年   95篇
  2022年   151篇
  2021年   255篇
  2020年   216篇
  2019年   242篇
  2018年   307篇
  2017年   260篇
  2016年   439篇
  2015年   551篇
  2014年   589篇
  2013年   723篇
  2012年   897篇
  2011年   780篇
  2010年   527篇
  2009年   472篇
  2008年   605篇
  2007年   591篇
  2006年   519篇
  2005年   445篇
  2004年   401篇
  2003年   350篇
  2002年   321篇
  2001年   117篇
  2000年   77篇
  1999年   83篇
  1998年   85篇
  1997年   59篇
  1996年   68篇
  1995年   66篇
  1994年   54篇
  1993年   47篇
  1992年   46篇
  1991年   38篇
  1990年   23篇
  1989年   29篇
  1988年   38篇
  1987年   23篇
  1986年   28篇
  1985年   32篇
  1984年   37篇
  1983年   18篇
  1982年   18篇
  1981年   31篇
  1980年   25篇
  1979年   24篇
  1978年   23篇
  1976年   14篇
  1974年   21篇
  1973年   22篇
  1968年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Positive and negative plant–plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co‐occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant–plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co‐ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co‐occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207–272.8 Myr led to competition, while values outside this range or fleshy‐fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species‐specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant–plant interactions. Our study helps to improve current theory on plant–plant interactions and to understand how these interactions can respond to expected modifications in species composition and climate associated to ongoing global environmental change.  相似文献   
992.
Large malaria epidemics in the East African highlands during the mid and late 1990s kindled a stream of research on the role that global warming might have on malaria transmission. Most of the inferences using temporal information have been derived from a malaria incidence time series from Kericho. Here, we report a detailed analysis of 5 monthly time series, between 15 and 41 years long, from West Kenya encompassing an altitudinal gradient along Lake Victoria basin. We found decreasing, but heterogeneous, malaria trends since the late 1980s at low altitudes (<1600 m), and the early 2000s at high altitudes (>1600 m). Regime shifts were present in 3 of the series and were synchronous in the 2 time series from high altitudes. At low altitude, regime shifts were associated with a shift from increasing to decreasing malaria transmission, as well as a decrease in variability. At higher altitudes, regime shifts reflected an increase in malaria transmission variability. The heterogeneity in malaria trends probably reflects the multitude of factors that can drive malaria transmission and highlights the need for both spatially and temporally fine-grained data to make sound inferences about the impacts of climate change and control/elimination interventions on malaria transmission.  相似文献   
993.
Ferredoxins are iron–sulfur proteins involved in various one-electron transfer pathways. Ferredoxin levels decrease under adverse environmental conditions in photosynthetic organisms. In cyanobacteria, this decline is compensated by induction of flavodoxin, an isofunctional flavoprotein. Flavodoxin is not present in higher plants, but transgenic Nicotiana tabacum lines accumulating Anabaena flavodoxin in plastids display increased tolerance to different sources of environmental stress. As the degree of tolerance correlated with flavodoxin dosage in plastids of nuclear-transformed transgenic tobacco, we prepared plants expressing even higher levels of flavodoxin by direct plastid transformation. A suite of nuclear- and chloroplast-transformed lines expressing a wide range of flavodoxin levels, from 0.3 to 10.8?μmol?m?2, did not exhibit any detectable growth phenotype relative to the wild type. In the absence of stress, the contents of both chlorophyll a and carotenoids, as well as the photosynthetic performance (photosystem II maximum efficiency, photosystem II operating efficiency, electron transport rates and carbon assimilation rates), displayed a moderate increase with flavodoxin concentrations up to 1.3–2.6?μmol flavodoxin m?2, and then declined to wild-type levels. Stress tolerance, as estimated by the damage inflicted on exposure to the pro-oxidant methyl viologen, also exhibited a bell-shaped response, with a significant, dose-dependent increase in tolerance followed by a drop in the high-expressing lines. The results indicate that optimal photosynthetic performance and stress tolerance were observed at flavodoxin levels comparable to those of endogenous ferredoxin. Further increases in flavodoxin content become detrimental to plant fitness.  相似文献   
994.
995.
996.
Colchicine was modified at the 10-OCH3 position of the C-ring by reaction with heterocyclic amines or commercially available amines to afford a library of target colchicinoids in high yields (62–99%). Molecular modeling revealed that the incorporation of the linker groups led to a reduction in entropy and therefore binding affinity when compared with colchicine. Some colchicinoids were shown to be equicytotoxic with colchicine when evaluated in the DLD-1 colon cancer cells and retained activity in resistant A2780AD or HeLa cells with mutant Class III β-tubulin. Importantly, unlike colchicine, the analogues in this study are amenable for prodrug derivatisation and with potential for tumor-selective delivery.  相似文献   
997.
Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological point of view. In spite of their extent and importance, the impacts of global environmental change on them remain poorly understood. In this introduction, we review some of the main expected impacts of global change in drylands, quantify research efforts on the topic, and highlight how the articles included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali, Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate that most global change research carried out to date in drylands has been done on a unidisciplinary basis. The contributions included here use a wide array of organisms (from micro-organisms to humans), spatial scales (from local to global) and topics (from plant demography to poverty alleviation) to examine key issues to the socio-ecological impacts of global change in drylands. These papers highlight the complexities and difficulties associated with the prediction of such impacts. They also identify the increased use of long-term experiments and multidisciplinary approaches as priority areas for future dryland research. Major advances in our ability to predict and understand global change impacts on drylands can be achieved by explicitly considering how the responses of individuals, populations and communities will in turn affect ecosystem services. Future research should explore linkages between these responses and their effects on water and climate, as well as the provisioning of services for human development and well-being.  相似文献   
998.
There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrP(c)) to this process remains unclear. PrP(c) is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrP(c) influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrP(c) proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrP(c) knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.  相似文献   
999.
Miscanthus × giganteus is a C4 perennial grass that shows great potential as a high‐yielding biomass crop. Scant research has been published that reports M. × giganteus growth and biomass yields in different environments in the United States. This study investigated the establishment success, plant growth, and dry biomass yield of M. × giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia, NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha?1) were applied at each location each year. Good survival of M. × giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing‐season precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season 3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (< 0.0001) of 15.6–27.4 Mg ha?1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha?1 in 2009 to 19.0 Mg ha?1 in 2010 could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. ×giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha?1 between 2009 and 2010 and were related to hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end‐of‐season plant height () and tiller density (). Nitrogen fertilization had no significant effect on plant height, tiller density, or dry biomass yield at any of the sites during 2009 or 2010.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号