首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2829篇
  免费   208篇
  国内免费   1篇
  3038篇
  2024年   3篇
  2023年   28篇
  2022年   53篇
  2021年   110篇
  2020年   79篇
  2019年   101篇
  2018年   103篇
  2017年   112篇
  2016年   146篇
  2015年   182篇
  2014年   202篇
  2013年   241篇
  2012年   288篇
  2011年   220篇
  2010年   124篇
  2009年   107篇
  2008年   146篇
  2007年   141篇
  2006年   131篇
  2005年   93篇
  2004年   92篇
  2003年   79篇
  2002年   63篇
  2001年   16篇
  2000年   18篇
  1999年   21篇
  1998年   14篇
  1997年   12篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有3038条查询结果,搜索用时 0 毫秒
171.
172.
173.
The SOUL/p22HBP family is an evolutionarily ancient group of heme binding proteins with a main function as cytosolic buffer against tetrapyrrole accumulation. Structural and biochemical evidence suggest specialized roles in blood formation, necrotic cell death and chemotaxis. To date, nothing is known about the precise activity and expression patterns of this class of heme binding proteins during development. The zebrafish genome possesses five soul genes belonging to two subgroups, and no p22HBP orthologous gene. Here, spatial and temporal expression patterns are reported for zebrafish soul1, soul2 and soul4 genes. All three soul genes are maternally transcribed, and their zygotic expression takes place in unique (heart, pharynx, yolk syncytial layer, brain, eyes, lateral line) and overlapping (pronephros, pituitary gland, olfactory and otic vesicle) regions of the zebrafish embryo. Our study constitutes the first detailed analysis of soul gene expression in metazoan development, and provides the basis to understand the genetics of tetrapyrrole metabolism in a wide range of embryonic processes.  相似文献   
174.
Lungfish (Dipnoi) are the closest living relatives to tetrapods, and they represent the transition from water to land during vertebrate evolution. Lungfish are armed with immunoglobulins (Igs), one of the hallmarks of the adaptive immune system of jawed vertebrates, but only three Ig forms have been characterized in Dipnoi to date. We report here a new diversity of Ig molecules in two African lungfish species (Protopterus dolloi and Protopterus annectens). The African lungfish Igs consist of three IgMs, two IgWs, three IgNs, and an IgQ, where both IgN and IgQ originated evidently from the IgW lineage. Our data also suggest that the IgH genes in the lungfish are organized in a transiting form from clusters (IgH loci in cartilaginous fish) to a translocon configuration (IgH locus in tetrapods). We propose that the intraclass diversification of the two primordial gnathostome Ig classes (IgM and IgW) as well as acquisition of new isotypes (IgN and IgQ) has allowed lungfish to acquire a complex and functionally diverse Ig repertoire to fight a variety of microorganisms. Furthermore, our results support the idea that “tetrapod-specific” Ig classes did not evolve until the vertebrate adaptation to land was completed ~360 million years ago.  相似文献   
175.
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.  相似文献   
176.
The relative influence of Neogene geomorphological events and Quaternary climatic changes as causal mechanisms on Neotropical diversification remains largely speculative, as most divergence timing inferences are based on a single locus and have limited taxonomic or geographic sampling. To investigate these influences, we use a multilocus (two mitochondrial and 11 nuclear genes) range‐wide sampling of Phyllopezus pollicaris, a gecko complex widely distributed across the poorly studied South American ‘dry diagonal’ biomes. Our approach couples traditional and model‐based phylogeography with geospatial methods, and demonstrates Miocene diversification and limited influence of Pleistocene climatic fluctuations on P. pollicaris. Phylogeographic structure and distribution models highlight that persistence across multiple isolated regions shaped the diversification of this species complex. Approximate Bayesian computation supports hypotheses of allopatric and ecological/sympatric speciation between lineages that largely coincide with genetic clusters associated with Chaco, Cerrado, and Caatinga, standing for complex diversification between the ‘dry diagonal’ biomes. We recover extremely high genetic diversity and suggest that eight well‐supported clades may be valid species, with direct implications for taxonomy and conservation assessments. These patterns exemplify how low‐vagility species complexes, characterized by strong genetic structure and pre‐Pleistocene divergence histories, represent ideal radiations to investigate broad biogeographic histories of associated biomes.  相似文献   
177.
Biological Invasions - Genetic diversity can affect population viability and can be reduced by both acute and chronic mechanisms. Using the history of the establishment and management of two...  相似文献   
178.
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus‐induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post‐inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non‐infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.  相似文献   
179.
Cortical function has been suggested to be highly compromised by repeated heroin self-administration. We have previously shown that street heroin induces apoptosis in neuronal-like PC12 cells. Thus, we analysed the apoptotic pathways involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our street heroin sample was shown to be mainly composed by heroin, 6-monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early activation of caspases involved in the mitochondrial apoptotic pathway was observed, culminating in caspase 3 activation, Poly-ADP Ribose Polymerase (PARP) cleavage and DNA fragmentation. Apoptotic morphology was completely prevented by the non-selective caspase inhibitor z-VAD-fmk, indicating an important role for caspases in neurodegeneration induced by street heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not involved in caspase 3 activation. Interestingly, street heroin cytotoxicity was shown to be independent of a functional mitochondrial respiratory chain, as determined using NT-2 rho(0) cells. Nonetheless, in street heroin-treated cortical neurons, cytochrome c was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. Pure heroin hydrochloride similarly decreased metabolic viability but only slightly activated caspase 3. Altogether, our data suggest an important role for mitochondria in mediating street heroin neurotoxic effects.  相似文献   
180.
Phylogenetic and functional analysis of Arabidopsis RCI2 genes   总被引:3,自引:0,他引:3  
Six new Arabidopsis thaliana genes (AtRCI2C-H) have been identified that show high homology to AtRCI2A and AtRCI2B. Sequence comparisons revealed that AtRCI2-related genes are widely spread among very different organisms, including other plant species, prokaryotes, fungi, and simply organized animals, and are also organized in gene families. Most RCI2 genes show a similar exon-intron organization, which indicates that they have been structurally conserved during evolution, and encode small, highly hydrophobic proteins containing two putative transmembrane domains. Consistently, the majority of AtRCI2 proteins localize in the plasma membrane. RCI2 proteins exhibit an elevated level of sequence similarity and seem to have evolved from a common ancestor. In spite of their high similarity, conserved subcellular localization, and common origin, experimental evidence is presented suggesting that different RCI2 proteins may have distinct functional roles. Thus, as previously demonstrated for AtRCI2A and AtRCI2B, the newly identified AtRCI2 genes (AtRCI2C-H) are differentially regulated in Arabidopsis organs and in response to abiotic stresses and ABA treatment. Furthermore, only the AtRCI2 proteins that do not contain the C-terminal hydrophilic tail (i.e. AtRCI2A-C and AtRCI2H) are able to complement for the loss of the yeast AtRCI2-related gene PMP3. On the basis of these results, different aspects on the evolution and roles of RCI2 genes are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号