首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2377篇
  免费   156篇
  国内免费   1篇
  2024年   3篇
  2023年   28篇
  2022年   51篇
  2021年   99篇
  2020年   72篇
  2019年   92篇
  2018年   96篇
  2017年   101篇
  2016年   125篇
  2015年   158篇
  2014年   173篇
  2013年   222篇
  2012年   243篇
  2011年   201篇
  2010年   111篇
  2009年   91篇
  2008年   126篇
  2007年   117篇
  2006年   105篇
  2005年   75篇
  2004年   68篇
  2003年   63篇
  2002年   47篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2534条查询结果,搜索用时 15 毫秒
151.
Annelid erythrocruorins are respiratory proteins with high cooperativity and low autoxidation rates. The giant extracellular hemoglobin of the earthworm, Glossoscolex paulistus (HbGp), has a molecular mass of 3.6 MDa. In this work, isothermal titration calorimetry (ITC), together with DLS and fluorescence emission have been used to investigate the interaction of SDS with the HbGp in the oxy‐form, at pH 7.0. Our ITC and DLS results show that addition of SDS induces oxy‐HbGp oligomeric dissociation, while a small amount of protein aggregation is observed only by DLS. Moreover, the oligomeric dissociation process is favored at lower protein concentrations. The temperature effect does not influence significantly the interaction of SDS with the hemoglobin, due to the similarities presented by the critical aggregation concentration (cac) and critical micelle concentration (cmc′) for the mixtures. The increase of oxy‐HbGp concentration leads to a slight variation of the cac values for the SDS‐oxy‐HbGp mixture, attributed mainly to the noncooperative electrostatic binding of surfactant to protein. However, the cmc′ values increase considerably, associated to a more cooperative hydrophobic binding. Complementary pyrene fluorescence emission studies show formation of pre‐micellar structures of the mixture already at lower SDS concentrations. This study opens the possibility of the evaluation of the surfactant effect on the hemoglobin stability by ITC, which is made for the first time with this extracellular hemoglobin. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1065–1076, 2014.  相似文献   
152.
It is expected that females preferentially oviposit on plant hosts that allow for optimal larval performance. However, this expectation contradicts empirical evidence where adults do not always choose the best host for their descendants. Recent evidence suggests that females’ host selection depends on the number of potential hosts. Females from oligophagous species seem to be able to choose an appropriate host in terms of larval performance, whereas in polyphagous species, adult oviposition preference is not related with larval performance. This suggests that larvae in polyphagous species could be taking a more active role in host selection than their mothers. Here, we evaluated the oviposition preference and the larval preference and performance of two polyphagous species of economic importance, Copitarsia decolora (Guenée) (Lepidoptera: Noctuidae: Cuculliinae) and Peridroma saucia (Hübner) (Lepidoptera: Noctuidae: Noctuinae), on eight species of cultivated plants. In laboratory and greenhouse choice assays, we tested adult preference for oviposition and larval preference at 1 and 24 h. Larval performance was measured in terms of survival to adulthood, length of larval period, and pupal weight. We found that both adult females and larvae actively choose their hosts and that the larval preference toward the hosts is related to the females’ preference in both herbivore species. However, the females and larvae did not preferentially select the host with the best larval performance, indicating that larval performance is not related to female or larval preference and that other selective pressures are influencing the choice of the host plant in these two species.  相似文献   
153.
Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.  相似文献   
154.
Melaleuca alternifolia is cultivated for the production of an essential oil useful in the cosmetic and pharmaceutical industries. Despite the economic importance of this species, there is little knowledge about its in vitro propagation. The aim of this study was to establish an efficient protocol for micropropagation of M. alternifolia. With the goal of in vitro multiplication by axillary shoot proliferation, both solid and liquid MS and WPM media were tested with supplementation with BA at 0, 0.55, 1.11, 2.22, 3.33, and 4.44 μM. The best result for shoot multiplication was obtained when either 0.55 μM BA was added into solid MS medium or 1.11 μM BA was added into liquid MS medium, with 5.6 and 11.8 shoots per explant generated, respectively. On solid or liquid WPM medium supplemented with 0.55 μM BA, the proliferation rates were 5.5 and 4.7, respectively. Three auxins (NAA, IAA, and IBA) were tested at 0.53 and 2.64 μM during the rooting stage. Several sucrose concentrations (15, 30, and 45 g L−1) were compared to a sucrose-free medium. Rooting performances on four culture media were then compared: MS, half-strength MS (MS/2), MS + activated charcoal (AC), and MS/2 + AC. The results showed that auxin addition to culture medium is not necessary for in vitro rooting. Rooted microcuttings from different culture media were acclimatized in a greenhouse, and the survival percentage was evaluated. All shoots cultured in an auxin-free MS medium supplemented with sucrose (30 g L−1) produced roots, and all plants survived during acclimatization. Activated charcoal added in rooting medium reduced rooting rates.  相似文献   
155.
Bladder cancer (BC) is the fourth most common cancer in the USA. In Brazil, BC represents 3% of the total existing carcinomas in the population and represents the second highest incidence among urological tumors. The majority of bladder cancer cell lines available were derived from Caucasians and established in the seventies or eighties. Thus, neoplasia development in these cells likely occurred in environment conditions vastly different than today. In the present study, we report the establishment and characterization of three Brazilian bladder cancer cell lines (BexBra1, BexBra2, and BexBra4). These cell lines may be helpful for dissecting the genetic and epigenetic aspects that trigger the progression of BC. Moreover, the development of a Brazilian representative of the disease will allow us to investigate the potential inter-racial differences of malignancy-associated phenotypes in bladder cancer.  相似文献   
156.
Triterpenoid saponins are a class of plant secondary metabolites with structure derived from the precursor oxidosqualene in which one or more sugar residues are added. They have a wide range of pharmacological applications, such as antiplatelet, hypocholesterolemic, antitumoral, anti-HIV, immunoadjuvant, anti-inflammatory, antibacterial, insecticide, fungicide and anti-leishmanial agents. Their accumulation in plant cells is stimulated in response to changes mediated by biotic and abiotic elicitors. The enhancement of saponin yields by methyl jasmonate in plants and cell cultures in several species indicates the involvement of these metabolites in plant defence mechanisms. The elucidation of their biosynthesis at the molecular level has advanced recently. Most studies to date have focused on the participation of early enzymes in the pathway, including oxidosqualene cyclase, squalene synthase and dammarenediol synthase, as well as in isolating and characterizing genes that encode β-amyrin synthase. Yields of bioactive saponins in various plant species and experimental systems have been successfully increased by treating cells and tissues with jasmonate or by exposing these to oxidative stress. These elicitation and molecular studies are consolidating a robust knowledge platform from which to launch the development of improved sources for commercial supply of bioactive saponins.  相似文献   
157.
Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the shade. Nonetheless, older seedlings are commonly found at full sun. We tested the hypothesis that light capture and photochemical and non-photochemical energy dissipation of both photosystems PSI and PSII adjust with ontogeny and brighter environment. Light energy partitioning in both photosystems was studied in seedlings of different developmental stages (small 9.7 cm, tall 36 cm) under contrasting light environments (8–200 and 1,800–2,043 μmol photons m−2 s−1) in the Chilean evergreen temperate forest. Higher A max, dark respiration, and light compensation and saturation points in sun seedlings of both developmental stages were accompanied by higher rates of electron transport. These seedlings also showed a high fraction of open PSII reaction centres and similar non-photochemical quenching at high-light in both photosystems, showing no effect of developmental stage in these parameters. Conversely, light capture, total thermal dissipation after photoinhibition, active down-regulation of antenna efficiency, and state transitions were higher in smaller seedlings than in taller ones. These changes maintain photostasis, preventing photodamage, while favouring a more oxidized quinone pool. There is an independent effect of seedling development and light acclimation on this transition from shade to sun during early ontogeny. This transition reflects short-term responses of the photosynthetic apparatus to light and longer term responses that depend on seedling developmental stage.  相似文献   
158.
In this work, 74 Saccharomyces cerevisiae strains isolated from cachaça fermentation of six different geographic regions in Brazil were characterized by mitochondrial DNA restriction fragment length polymorphism (mtDNA-RFLP) and by their ability to grow on stress conditions occurring during the cachaça fermentation process. Cachaça S. cerevisiae strains showed high mtDNA-RFLP polymorphism with the occurrence of 32 different molecular patterns. The S. cerevisiae strains presenting prevalent mtDNA were able to grow better in the stress conditions than strains represented by infrequent patterns. The principal coordinate analysis on 17 stress conditions revealed that the major source of growth variation were high ethanol concentrations and low temperatures. These results indicate that the stress conditions occurring in the fermentation process influence the prevalence of the most adapted S. cerevisiae strains in each distillery. The physiological tests used in our study can be used as a criterion for rapidly selecting autochthonous yeast strains for further purposes such as the selection of fermentative starters of S. cerevisiae strains.  相似文献   
159.
In this study, we report results of the detection and analysis of SSR markers derived of cacao–Moniliophthora perniciosa expressed sequence tags (ESTs) in relation to cacao resistance to witches’ broom disease (WBD), and we compare the polymorphism of those ESTs (EST-simple sequence repeat (SSR)) with classical neutral SSR markers. A total of 3,487 ESTs was used in this investigation. SSRs were identified in 430 sequences: 277 from the resistant genotype TSH 1188 and 153 from the susceptible one Catongo, totalizing 505 EST-SSRs with three types of motifs: dinucleotides (72.1%), trinucleotides (27.3%), and tetranucleotides (0.6%). EST-SSRs were classified into 16 main categories; most of the EST-SSRs belonged to “Unknown function” and “No homology” categories (45.82%). A high frequency of SSRs was found in the 5’UTR and in the ORF (about 27%) and a low frequency was observed in the 3’UTR (about 8%). Forty-nine EST-SSR primers were designed and evaluated in 21 cacao accessions, 12 revealed polymorphism, having 47 alleles in total, with an average of 3.92 alleles per locus. On the other hand, the 11 genomic SSR markers revealed a total of 47 alleles, with an average of 5.22 alleles per locus. The association of EST-SSR with the genomic SSR enhanced the analysis of genetic distance among the genotypes. Among the 12 polymorphic EST-SSR markers, two were mapped on the F2 Sca 6 × ICS 1 population reference for WBD resistance.  相似文献   
160.
Populations of a moderately thermophilic magnetotactic bacterium were discovered in Great Boiling Springs, Nevada, ranging from 32 to 63°C. Cells were small, Gram-negative, vibrioid to helicoid in morphology, and biomineralized a chain of bullet-shaped magnetite magnetosomes. Phylogenetically, based on 16S rRNA gene sequencing, the organism belongs to the phylum Nitrospirae.Magnetotactic bacteria are a metabolically, morphologically, and phylogenetically heterogeneous group of prokaryotes that passively align and actively swim along magnetic field lines (3). This behavior, called magnetotaxis, is due to the presence of intracellular, membrane-bounded, single-magnetic-domain crystals of magnetite (Fe3O4) and/or greigite (Fe3S4) (3).Most known cultured magnetotactic bacteria are mesophilic and do not grow much above 30°C (e.g., Magnetospirillum species and Desulfovibrio magneticus strains MV-1 and MC-1 [D. A. Bazylinski, unpublished data]). Uncultured magnetotactic bacteria have been observed in numerous habitats that were mostly at 30°C and below. There is only one report describing thermophilic magnetotactic bacteria despite a number of efforts to look for them (e.g., in hydrothermal vents [D. A. Bazylinski, unpublished data]). Nash (12) reported the presence of thermophilic magnetotactic bacteria in microbial mats at about 45 to 55°C adjacent to the main flow in Little Hot Creek (but not in other springs in the same area at 40 to 80°C) and in microbial mats of other springs in central California at up to 58°C, all on the east side of the Sierra Nevada mountains. Cells biomineralized bullet-shaped crystals of magnetite and were phylogenetically affiliated with the phylum Nitrospirae (12). Few additional details were provided regarding the organisms and their habitat.In this study, water and surface sediment samples were taken from the Great Boiling Springs (GBS) geothermal field in Gerlach, NV. GBS is a series of hot springs that range from ambient temperature to ∼96°C (2, 5). The geology, chemistry, and microbial ecology of the springs have been described in some detail (2, 5). The pHs of the samples ranged from 6.4 to 7.5, while the salinities were about 4 to 5 ppt, as determined with a handheld Palm Abbe PA203 digital refractometer (MISCO Refractometer, Cleveland, OH). Samples were examined for the presence of magnetotactic bacteria using the hanging drop technique on-site and in the laboratory at room temperature with and without magnetic enrichment of the sample (15). Some samples taken back to the laboratory were kept at an elevated temperature (∼62°C), while others were kept at ambient temperature. There did not appear to be a significant difference in the number of magnetotactic cells in samples taken back to the laboratory and kept at these two temperatures. Only one morphotype of magnetotactic bacteria was found in samples from nine springs whose temperatures ranged from 32 to 63°C, and we estimate their numbers to be between 103 to 105 cells ml−1 in surface sediments in sample bottles. We did not observe magnetotactic cells of this type in a large number of springs or pools that were at <32°C. Only one spring positive for the presence of these magnetotactic bacteria had sediment that was partially covered with a microbial mat, while sediment at most of the springs was dark gray in color. Cells were small (1.8 ± 0.4 by 0.4 ± 0.1 μm; n = 59), Gram negative, vibrioid to helicoid in morphology, and possessed a single polar flagellum (Fig. (Fig.1A).1A). Magnetotactic bacteria were not observed in springs that were at 67°C and above, suggesting the maximum survival and perhaps growth temperature for the organism is about 63°C. In the lab, cells remained viable and motile in samples kept at 25 to 62°C for several months. We refer to this organism as strain HSMV-1.Open in a separate windowFIG. 1.Transmission electron microscope (TEM) images of cells and magnetosomes of strain HSMV-1. (A) TEM image of unstained cell of HSMV-1 showing a single polar flagellum and a single chain of bullet-shaped magnetosomes. The electron-dense structures at the poles were found to be phosphorus-rich based on energy-dispersive X-ray analysis (data not shown) and therefore likely represent polyphosphate granules. (B) Higher-magnification TEM image of the magnetosome chain. (C) High-magnification TEM image of magnetosomes from which a selected area electron diffraction (SAED) pattern was obtained (inset of B). The SAED pattern corresponds to the [1 0−1] zone of magnetite, Fe3O4: reflection o, (0 0 0); reflection a, (1 −1 1) (0.48 nm); reflection b, (1 1 1) (0.48 nm); reflection c, (2 0 2) (0.30 nm); angle a-o-b, 70.5°. (D) Iron, sulfur, and oxygen elemental maps, derived from energy-filtering transmission electron microscopy (EFTEM), showing that the positions of the magnetosome crystals correlate with increased concentrations of Fe and O, but not S, consistent with the iron oxide magnetite (Fe3O4).Cells of HSMV-1 biomineralized a single chain of magnetosomes that traversed the cells along their long axis (Fig. 1A to C). Selected area electron diffraction (SAED) and energy-filtering transmission electron microscopy (EFTEM) elemental maps were determined on magnetosome crystals using a Tecnai model G2 F30 Super-Twin transmission electron microscope (FEI Company, Hillsboro OR). SAED patterns of HSMV-1 magnetosome crystals (Fig. (Fig.1B,1B, inset) indicated that they consisted of magnetite, while EFTEM elemental maps (Fe, O and S) (Fig. (Fig.1D)1D) clearly showed that the crystals consisted of an iron oxide and not an iron sulfide, again consistent with the mineral magnetite. Cells contained an average of 12 ± 6 magnetosome crystals per cell (n = 15 cells) that averaged 113 ± 34 by 40 ± 5 nm in size (n = 179). A plot of the length of the crystals as a function of the shape factor (width/length ratio) is provided in Figure S1 in the supplemental material and shows that the crystals fit in the theoretical single-magnetic-domain size range (4), along with all known mature magnetosome magnetite crystals from magnetotactic bacteria (3).Whole-cell PCR amplification of the 16S rRNA gene was performed by first magnetically purifying cells of HSMV-1 using the “capillary racetrack” described by Wolfe et al. (18). Purity of the collected cells was determined by microscopic examination, and contaminating cells were never observed. The 16S rRNA gene was amplified using bacteria-specific primers 27F 5′-AGAGTTTGATCMTGGCTCAG-3′ and 1492R 5′-TACGGHTACCTTGTTACGACTT-3′ (11). PCR products were cloned into pGEM-T Easy vector (Promega Corporation, Madison, WI) and sequenced (Functional Biosciences, Inc., Madison, WI). Six of eight clones sequenced had identical inserts.Alignment of 16S rRNA gene sequences was performed using the CLUSTAL W multiple alignment accessory application in the BioEdit sequence alignment editor (7). Phylogenetic trees were constructed using MEGA version 4 (17) by applying the neighbor-joining method (14). Bootstrap values were calculated with 1,000 replicates. The 16S rRNA gene sequence of strain HSMV-1 places the organism in the phylum Nitrospirae (Fig. (Fig.2),2), with its closest relative in culture being Thermodesulfovibrio hydrogeniphilus (87.2% identity) (8). Two other uncultured magnetotactic bacteria are phylogenetically affiliated with the phylum Nitrospirae, including the unnamed rod-shaped bacterium strain MHB-1 (86.5% identity) (6) and the very large Candidatus Magnetobacterium bavaricum (86.4% identity) (16). Interestingly, all the magnetotactic bacteria associated with the phylum Nitrospirae thus far (e.g., Candidatus Magnetobacterium bavaricum) contain bullet-shaped magnetite crystals in their magnetosomes.Open in a separate windowFIG. 2.Phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic position of strain HSMV-1 in the phylum Nitrospirae. Bootstrap values at nodes are percentages of 1,000 replicates. The magnetotactic bacteria Desulfovibrio magneticus and Candidatus Magnetoglobus multicellularis (outgroup; deltaproteobacteria) were used to root the tree. GenBank accession numbers are given in parentheses. Bar represents 2% sequence divergence.Fluorescent in situ hybridization (FISH) was used to authenticate the 16S rRNA gene sequence. A specific Alexa594-labeled probe for HSMV-1 was designed (HSMVp, 5′-CCTTCGCCACAGGCCTTCTA-3′, complementary to nucleotides 690 to 709 of the 16S rRNA molecule) based on the alignment of 10 of the most similar 16S rRNA gene sequences found in GenBank after BLAST analysis (1) and on cultivated members of the phylum Nitrospirae. FISH with the Alexa594-labeled probe was carried out after fixation of magnetically concentrated cells directly on the wells of gelatin-coated hydrophobic microscope slides with 4% paraformaldehyde. FISH was performed according to the work of Pernthaler et al. (13). The hybridization solution contained 10 ng/ml of the probe, 20% formamide, 0.9 M NaCl, 20 mM Tris-HCl (pH 7.4), 1 mM Na2EDTA, and 0.01% sodium dodecyl sulfate (SDS). Cells of HSMV-1 hybridized to the HSMVp probe, while other cells in the sample did not (Fig. (Fig.3),3), indicating that the 16S rRNA gene sequence we obtained is from the magnetotactic bacterium under study. Strain HSMV-1 clearly represents a new genus (Fig. (Fig.2),2), and based on the phylogeny and what we currently know phenotypically about strain HSMV-1, we propose the name Candidatus Thermomagnetovibrio paiutensis (the GBS site was originally occupied by the Paiute Indian Tribe).Open in a separate windowFIG. 3.Fluorescent in situ hybridization (FISH) of cells of strain HSMV-1 using an HSMV-1-specific oligonucleotide rRNA probe (HSMVp). Cells used for FISH were magnetically concentrated by placing a magnet next to the side of the sample bottle for 30 min and then removed with a Pasteur pipette. This technique was used rather than the magnetic racetrack method in order to have many HSMV-1 cells as well as some other cells that could be used as a negative control. (A) Differential interference contrast (DIC) image of HSMV-1 cells (filled arrows) and other cells (negative control; empty arrows) from hot spring samples; (B) cells stained with 4′,6-diamidino-2-phenylindole (DAPI); (C) cells hybridized with the specific probe HSMVp.Nash (12) first reported thermophilic magnetotactic bacteria phylogenetically affiliated with the Nitrospirae phylum in hot springs, and it would be interesting and important to compare these organisms and their habitats. However, little can be compared at this time due to lack of information. Nash (12) reported that the one spring at Little Hot Creek was freshwater and that microbial mats were present at all springs where thermophilic magnetotactic bacteria were found. The water at our sampling sites was brackish, not freshwater, and microbial mats were not an important feature of our springs. Thus, it is difficult to determine without knowing the relationship between the organisms found by Nash (12) and strain HSMV-1 what environmental parameters are important to the growth and survival of these bacteria.It is also difficult to determine the temperature ranges for the survival and growth for strain HSMV-1 without having a pure culture. Data presented here suggest that the temperature range for both is quite wide, and this would be important for the continued presence of HSMV-1 at GBS, as temperatures in the hot springs are known to fluctuate greatly (2). Even if the maximum growth temperature of HSMV-1 is slightly lower than the maximum survival temperature (a conservative estimate) that we know of (63°C), it would still be considered a moderately thermophilic bacterium.The results presented here clearly show that some magnetotactic bacteria can be considered at least moderately thermophilic. They extend the upper temperature limit for environments where magnetotactic bacteria exist and likely grow (∼63°C) and where magnetosome magnetite is deposited, a finding that may prove significant in the study and interpretation of magnetofossils (9, 10).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号