首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   6篇
  2015年   6篇
  2014年   2篇
  2013年   13篇
  2012年   11篇
  2011年   12篇
  2010年   10篇
  2009年   10篇
  2008年   19篇
  2007年   15篇
  2006年   15篇
  2005年   15篇
  2004年   14篇
  2003年   15篇
  2002年   9篇
  2001年   3篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   8篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1960年   3篇
  1959年   1篇
  1958年   1篇
  1956年   2篇
  1955年   1篇
  1951年   1篇
  1912年   3篇
  1911年   1篇
排序方式: 共有264条查询结果,搜索用时 31 毫秒
71.
The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca(2+) channels as well as Na(+)-H(+) exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca(2+). Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.  相似文献   
72.
73.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause.  相似文献   
74.
We have recently taken advantage of the unique power of DNA microarrays to compare the genomic expression profile of tetrahydrogestrinone (THG) with that of dihydrotestosterone (DHT), the most potent natural androgen, thus clearly demonstrating that THG is an anabolic steroid. In 2004, the U.S. Controlled Substances Act has been modified to include androstenedione (4-dione) as an anabolic steroid. However, despite the common knowledge that dehydroepiandrosterone (DHEA) is the precursor of testosterone, DHEA has been excluded from the list of anabolic steroids. We thus used the same DNA microarray technology to analyze the expression profile of practically all the 30,000 genes of the mouse genome modulated by DHEA and DHT in classical androgen-sensitive tissues. Daily subcutaneous injections of DHT (0.1mg) or DHEA (3mg) for 1 month in gonadectomized C57BL6/129 SV mice increased ventral prostate, dorsal prostate, seminal vesicle and preputial gland weight (p<0.01 for all tissues). As early as 24h after single injection of the two steroids, 878, 2681 and 14 probe sets were commonly stimulated or inhibited (p<0.01, change> or =30%), in the prostate (ventral+dorsal), seminal vesicles and preputial glands, respectively, compared to tissues from gonadectomized control animals. After 7 days of daily treatment with DHEA and DHT, 629, 919 and 562 probe sets were commonly modulated in the same tissues while after 27 days of treatment, 1195, 5127 and 2883 probe sets were modulated, respectively. In analogy with the data obtained with THG, the present microarray data provide an extremely precise and unquestionable genomic signature and proof of the androgenic/anabolic activity of DHEA. Such data add to the literature showing that DHEA is transformed into androgens in the human peripheral tissues as well as in laboratory animal species, including the monkey, thus exerting potent androgenic/anabolic activity. The present microarray approach to identify anabolic compounds is applicable to all potential androgenic/anabolic compounds.  相似文献   
75.
A popular explanation for the small number of women at the top level of intellectually demanding activities from chess to science appeals to biological differences in the intellectual abilities of men and women. An alternative explanation is that the extreme values in a large sample are likely to be greater than those in a small one. Although the performance of the 100 best German male chess players is better than that of the 100 best German women, we show that 96 per cent of the observed difference would be expected given the much greater number of men who play chess. There is little left for biological or cultural explanations to account for. In science, where there are many more male than female participants, this statistical sampling explanation, rather than differences in intellectual ability, may also be the main reason why women are under-represented at the top end.  相似文献   
76.
The pretreatment of human dendritic cells with interferon-β enhances their immune response to influenza virus infection. We measured the expression levels of several key players in that response over a period of 13 h both during pretreatment and after viral infection. Their activation profiles reflect the presence of both negative and positive feedback loops in interferon induction and interferon signaling pathway. Based on these measurements, we have developed a comprehensive computational model of cellular immune response that elucidates its mechanism and its dynamics in interferon-pretreated dendritic cells, and provides insights into the effects of duration and strength of pretreatment.  相似文献   
77.
Using immunofluorescence and 3-dimensional confocal microscopy techniques, the present study was designed to verify if NHE-1 is present at the level of the nuclear membrane in cells that are known to express this type of exchanger. Nuclei were isolated from aortic tissues of adult human, rabbit, and rats, as well as from liver tissues of human fetus, and adult rabbit and rat. In addition, cultured ventricular cardiomyocytes were isolated from 2-week-old rat. Our results showed the presence of NHE-1 in isolated nuclei of aortic vascular smooth muscle and liver of human, rabbit, and rat. NHE-1 seems to be distributed throughout the isolated nucleus and more particularly at the level of the nuclear membranes. The relative fluorescence density of NHE-1 was significantly higher (p < 0.05) in isolated liver nuclei of human, when compared with those of rabbit and rat. However, in isolated nuclei of aortic vascular smooth muscle, the relative fluorescence density of NHE-1 was significantly (p < 0.001) higher in the rabbit when compared with human and rat. In cultured rat ventricular cardiomyocytes, NHE-1 fluorescent labeling could be easily seen throughout the cell, including the nucleus, and more particularly at both the sarcolemma and the nuclear membranes. In rat cardiomyocytes, the relative fluorescence density of NHE-1 of the sarcolemma membrane, including the cytosol, was significantly lower than that of the whole nucleus (including the nuclear envelope membranes). In conclusion, our results showed that NHE-1 is present at the nuclear membranes and in the nucleoplasm and its distribution and density may depend on cell type and species used. These results suggest that nuclear membranes' NHE-1 may play a role in the modulation of intranuclear pH.  相似文献   
78.
Prostaglandins are ubiquitous lipid mediators that play pivotal roles in cardiovascular homeostasis, reproduction, and inflammation, as well as in many important cellular processes including gene expression and cell proliferation. The mechanism of action of these lipid messengers is thought to be primarily dependent on their interaction with specific cell surface receptors that belong to the heptahelical transmembrane spanning G protein-coupled receptor superfamily. Accumulating evidence suggests that these receptors may co-localize at the cell nucleus where they can modulate gene expression through a series of biochemical events. In this context, we have recently demonstrated that prostaglandin E2-EP3 receptors display an atypical nuclear compartmentalization in cerebral microvascular endothelial cells. Stimulation of these nuclear EP3 receptors leads to an increase of eNOS RNA in a cell-free isolated nuclear system. This review will emphasize these findings and describe how nuclear prostaglandin receptors, notably EP3 receptors, may affect gene expression, specifically of eNOS, by identifying putative transducing elements located within this organelle. The potential sources of lipid ligand activators for these intracellular sites will also be addressed. The expressional control of G-protein-coupled receptors located at the perinuclear envelope constitutes a novel and distinctive mode of gene regulation.  相似文献   
79.
Oxidant stress plays a significant role in the pathogenesis of periventricular leukomalacia (PVL). Isoprostanes (IsoPs) are bioactive products of lipid peroxidation abundantly generated during hypoxic-ischemic injuries. Because loss of oligodendrocytes (OLs) occurs early in PVL, we hypothesized that IsoPs could induce progenitor OL death. 15-E(2t)-IsoP but not 15-F(2t)-IsoP elicited a concentration-dependent death of progenitor OLs by oncosis and not by apoptosis, but exerted minimal effects on mature OLs. 15-E(2t)-IsoP-induced cytotoxicity could not be explained by its conversion into cyclopentenones, because PGA(2) was hardly cytotoxic. On the other hand, thromboxane A(2) (TxA(2)) synthase inhibitor CGS12970 and cyclooxygenase inhibitor ibuprofen attenuated 15-E(2t)-IsoP-induced cytotoxicity. Susceptibility of progenitor OLs was independent of TxA(2) receptor (TP) expression, which was far less in progenitor than in mature OLs. However, TxA(2) synthase was detected in precursor but not in mature OLs, and TxA(2) mimetic U46619 induced hydroperoxides generation and progenitor OL death. The glutathione synthesis enhancer N-acetylcysteine prevented 15-E(2t)-IsoP-induced progenitor cell death. Depletion of glutathione in mature OLs with buthionine sulfoximine rendered them susceptible to cytotoxicity of 15-E(2t)-IsoP. These novel data implicate 15-E(2t)-IsoP as a product of oxidative stress that may contribute in the genesis of PVL.  相似文献   
80.
F2-isoprostanes (F2-IsoP's) are biologically active prostanoids formed by free radical-mediated peroxidation of arachidonic acid. Four different F2-IsoP regioisomers (5-, 8-, 12-, and 15-series), each comprising eight racemic diastereomers, total 64 compounds. Information regarding the biological activity of IsoP's is largely limited to 15-F2t-IsoP (8-iso-PGF2alpha). We recently demonstrated that 15-F2t-IsoP and its metabolite, 2,3-dinor-5,6-dihydro-15-F2t-IsoP, evoked vasoconstriction and TXA2 generation in retina and brain microvasculature. We have now examined and compared the biological activities of a series of recently synthesized new 5-, 12-, and 15-series F2-IsoP isomers in pig retinal and brain microvasculature. We hereby show that other 15-series F2-IsoP isomers, 15-epi-15-F2t-IsoP, ent-15-F2t-IsoP, and ent-15-epi-15-F2t-IsoP, are also potent vasoconstrictors. The 12-series isomers tested, 12-F2t-IsoP and 12-epi-12-F2t-IsoP, also caused marked vasoconstriction. Of the 5-series isomers tested, 5-F2t-IsoP and 5-epi-5-F2t-IsoP possessed no vasomotor properties, whereas ent-5-F2t-IsoP caused modest vasoconstriction. The vasoconstriction of ent-5-F2t-IsoP, 12-F2t-IsoP, and 12-epi-12-F2t-IsoP was abolished by removal of the endothelium, by TXA2 synthase and receptor inhibitor (CGS12970, L670,596), and by receptor-mediated Ca2+ channel blockade (SK & F96365); correspondingly, these isomers increased TXB2 formation by activating Ca2+ influx (detected with fura 2-AM) through non-voltage-dependent receptor-mediated Ca2+ entry (SK & F96365 sensitive) in endothelial cells. In conclusion, as seen with 15-F2t-IsoP, ent-5-F2t-IsoP, 12-F2t-IsoP, and 12-epi-12-F2t-IsoP constricted both retinal and brain microvessels by inducing endothelium-dependent TXA2 synthesis. These new findings broaden the scope of our understanding regarding the potential involvement of F2-IsoP's as mediators of oxidant injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号