Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and
insect hexamerins (storage proteins) are homologous gene products, although
the latter do not bind oxygen and do not possess the copper- binding
histidines present in the hemocyanins. An alignment of 19 amino acid
sequences of hemocyanin subunits and insect hexamerins was made, based on
the conservation of elements of secondary structure observed in X-ray
structures of two hemocyanin subunits. The alignment was analyzed using
parsimony and neighbor-joining methods. Results provide strong indications
for grouping together the sequences of the 2 crustacean hemocyanin
subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect
hexamerins. Within the insect clade, four methionine- rich proteins, four
arylphorins, and two juvenile hormone-suppressible proteins from
Lepidoptera, as well as two dipteran proteins, form four separate groups.
In the absence of an outgroup sequence, it is not possible to present
information about the ancestral state from which these proteins are
derived. Although this family of proteins clearly consists of homologous
gene products, there remain striking differences in gene organization and
site of biosynthesis of the proteins within the cell. Because studies on
18S and 12S rRNA sequences indicate a rather close relationship between
insects and crustaceans, we propose that hemocyanin is the ancestral
arthropod protein and that insect hexamerins lost their copper-binding
capability after divergence of the insects from the crustaceans.
相似文献
The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically‐relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β‐lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi‐functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly‐active exemplars usually found in textbooks. Instead, primordial‐like enzymes may be an essential part of the adaptive strategy associated with streamlining. 相似文献
This paper looked at the leaf architecture characteristics of Vachellia tortilis to determine if either there is or not an effect of the tropic line on plants. Vachellia tortilis leaves were sampled along a national road (N1) in Limpopo province. Sampling points were set 10 km apart away from the Tropic of Capricon in opposite directions. Leaf morphology revealed that leaves of V. tortilis are bipinnately compound with alternate arrangement. The venation pattern of the pinnules was eucamptodromus and brochidodromous with imperfect reticulation. Areoles were imperfect and pentagonal or irregular in shape. 相似文献
Multiple haplotypes from each of three nuclear loci were isolated and
sequenced from geographic populations of the American oyster, Crassostrea
virginica. In tests of alternative phylogeographic hypotheses for this
species, nuclear gene genealogies constructed for these haplotypes were
compared to one another, to a mitochondrial gene tree, and to patterns of
allele frequency variation in nuclear restriction site polymorphisms
(RFLPs) and allozymes. Oyster populations from the Atlantic versus the Gulf
of Mexico are not reciprocally monophyletic in any of the nuclear gene
trees, despite considerable genetic variation and despite large allele
frequency differences previously reported in several other genetic assays.
If these populations were separated vicariantly in the past, either
insufficient time has elapsed for neutral lineage sorting to have achieved
monophyly at most nuclear loci, or balancing selection may have inhibited
lineage extinction, or secondary gene flow may have moved haplotypes
between regions. These and other possibilities are examined in light of
available genetic evidence, and it is concluded that no simple explanation
can account for the great variety of population genetic patterns across
loci displayed by American oysters. Regardless of the source of this
heterogeneity, this study provides an empirical demonstration that
different sequences of DNA within the same organismal pedigree can have
quite different phylogeographic histories.
相似文献
The presence of weeds in the margins of strawberry crops can enhance populations of predatory mites as a measure to support conservation biological control. The aims of this study were (i) to assess the composition of the acarofauna associated with strawberries and the accompanying herbaceous plants in an organic farming system, and (ii) to evaluate the possible relationships between phytophagous and predatory mites occurring in this system. Strawberry leaves and whole plants of weeds were sampled biweekly from August 2014 to February 2015 in Lapa (Paraná, Brazil). In total, 23 weed species belonging to 10 families were identified; 3768 mite individuals (from 15 families and 4 suborders) were recovered, 77% on strawberries and 23% on weeds. Abundance of predatory mites on weeds was greater than on strawberry cultivars. On strawberries, the most abundant family was Tetranychidae (84%) followed by Phytoseiidae (11.6%). In total, 16 predatory mite species from the Phytoseiidae family were identified, 13 of them occurring on strawberry leaflets. Typholodromalus aripo, Neoseiulus californicus and Typhlodromips mangleae were the most abundant mite species on strawberry leaves. On weeds, most individuals were predatory mites (59%), whereas phytophagous mites represented 17.2%. The most abundant family was Phytoseiidae (36.4%). On weeds, the phytoseiid mite T. aripo was the most abundant species, representing 34.7%. Besides being found on strawberry leaflets, T. aripo was associated with 15 weed species. Among the weeds, Bidens pilosa showed the highest values of the Shannon index (1.97), Margalef index (3.04), and Pielou’s evenness index (0.95). This study emphasizes the importance of surrounding weeds as a shelter for beneficial mitefauna in strawberry fields, likely contributing to enhance conservation biological control.
C-Galactosides have been used as scaffolds to design a library of non-hydrolysable inhibitors of cholera toxin (CT). Test elements from the library were synthesized and found to inhibit CT binding to an asialofetuin-coated SPR chip with micromolar affinity. Preliminary results are reported. 相似文献