首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   46篇
  国内免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2019年   8篇
  2018年   13篇
  2017年   9篇
  2016年   18篇
  2015年   27篇
  2014年   33篇
  2013年   46篇
  2012年   62篇
  2011年   61篇
  2010年   39篇
  2009年   44篇
  2008年   54篇
  2007年   71篇
  2006年   67篇
  2005年   40篇
  2004年   59篇
  2003年   55篇
  2002年   55篇
  2001年   14篇
  2000年   10篇
  1999年   15篇
  1998年   12篇
  1997年   11篇
  1996年   10篇
  1995年   7篇
  1994年   8篇
  1993年   13篇
  1992年   4篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1965年   1篇
排序方式: 共有971条查询结果,搜索用时 31 毫秒
101.
Structural analysis of K+ channel pores suggests that the selectivity filter of the pore is an inherent sensor for extracellular K+ (Ko+); channels seem to be inactivated at low Ko+ because of a destabilization of the conducting state and a collapse of the pore. In the present study, the effect of depleting Ko+ on the activity of a plant K+ channel, KAT1, from Arabidopsis thaliana was investigated. This channel is thought to be insensitive to Ko+. The channel was therefore expressed in mammalian HEK293 cells and measured with patch clamp technology in the whole cell configuration. The effect of Ko+ depletion on channel activity was monitored from the tail currents before, during, and after washing Ko+ from the medium. The data show that a depletion of Ko+ results in a decrease in channel conductance, irrespective of whether K+ is simply removed or replaced by either Na+ or Li+. Quantitative analysis suggests that the channel has two binding sites for K+ with the dissociation constant in the order of 20 microM. This high sensitivity of the channel to Ko+ could serve as a safety mechanism, which inactivates the channel at low Ko+ and, in this way, prevents leakage of K+ from the cells via this type of channel.  相似文献   
102.
The structural clues of substrate recognition by calpain are incompletely understood. In this study, 106 cleavage sites in substrate proteins compiled from the literature have been analyzed to dissect the signal for calpain cleavage and also to enable the design of an ideal calpain substrate and interfere with calpain action via site-directed mutagenesis. In general, our data underline the importance of the primary structure of the substrate around the scissile bond in the recognition process. Significant amino acid preferences were found to extend over 11 residues around the scissile bond, from P(4) to P(7)'. In compliance with earlier data, preferred residues in the P(2) position are Leu, Thr, and Val, and in P(1) Lys, Tyr, and Arg. In position P(1) ', small hydrophilic residues, Ser and to a lesser extent Thr and Ala, occur most often. Pro dominates the region flanking the P(2)-P(1)' segment, i.e. positions P(3) and P(2)'-P(4)'; most notable is its occurrence 5.59 times above chance in P(3)'. Intriguingly, the segment C-terminal to the cleavage site resembles the consensus inhibitory region of calpastatin, the specific inhibitor of the enzyme. Further, the position of the scissile bond correlates with certain sequential attributes, such as secondary structure and PEST score, which, along with the amino acid preferences, suggests that calpain cleaves within rather disordered segments of proteins. The amino acid preferences were confirmed by site-directed mutagenesis of the autolysis sites of Drosophila calpain B; when amino acids at key positions were changed to less preferred ones, autolytic cleavage shifted to other, adjacent sites. Based on these preferences, a new fluorogenic calpain substrate, DABCYLTPLKSPPPSPR-EDANS, was designed and synthesized. In the case of micro- and m-calpain, this substrate is kinetically superior to commercially available ones, and it can be used for the in vivo assessment of the activity of these ubiquitous mammalian calpains.  相似文献   
103.
The authors investigated the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in 101 metastatic colorectal cancer patients treated with 5-fluoropyrimidine-based therapy and in 196 healthy individuals by PCR-RFLP method. There was no significant difference in genotype distribution of patients and healthy controls, and between subgroups investigated according to clinical parameters (age, gender, tumor location, grade and treatment type). However, after a 3-30 (median 18.5) months follow-up the survival of patients with T allele proved to be better than that of patients with wild type (CC) genotype (p=0.036). In case of CT and TT genotypes the survival of patients receiving only first line therapy was significantly shorter than that of patients receiving more lines of treatment (p=0.015). Determination of MTHFR C677T polymorphism has prognostic value in case of patients with metastatic colorectal cancer receiving 5-fluoropyrimidine-based therapy, and may help in designing the individual (group) tailored therapy.  相似文献   
104.
105.
We identified a sequence homologous to the Bcl-2 homology 3 (BH3) domain of Bcl-2 proteins in SOUL. Tissues expressed the protein to different extents. It was predominantly located in the cytoplasm, although a fraction of SOUL was associated with the mitochondria that increased upon oxidative stress. Recombinant SOUL protein facilitated mitochondrial permeability transition and collapse of mitochondrial membrane potential (MMP) and facilitated the release of proapoptotic mitochondrial intermembrane proteins (PMIP) at low calcium and phosphate concentrations in a cyclosporine A-dependent manner in vitro in isolated mitochondria. Suppression of endogenous SOUL by diced small interfering RNA in HeLa cells increased their viability in oxidative stress. Overexpression of SOUL in NIH3T3 cells promoted hydrogen peroxide-induced cell death and stimulated the release of PMIP but did not enhance caspase-3 activation. Despite the release of PMIP, SOUL facilitated predominantly necrotic cell death, as revealed by annexin V and propidium iodide staining. This necrotic death could be the result of SOUL-facilitated collapse of MMP demonstrated by JC-1 fluorescence. Deletion of the putative BH3 domain sequence prevented all of these effects of SOUL. Suppression of cyclophilin D prevented these effects too, indicating that SOUL facilitated mitochondrial permeability transition in vivo. Overexpression of Bcl-2 and Bcl-xL, which can counteract the mitochondria-permeabilizing effect of BH3 domain proteins, also prevented SOUL-facilitated collapse of MMP and cell death. These data indicate that SOUL can be a novel member of the BH3 domain-only proteins that cannot induce cell death alone but can facilitate both outer and inner mitochondrial membrane permeabilization and predominantly necrotic cell death in oxidative stress.  相似文献   
106.
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.Mobile DNA elements have been described in most organisms and represent a considerable proportion of their genetic material. These elements play an important role in the evolution of the host genome due to their capacities to generate DNA rearrangements and influence the expression of neighboring genes. Their ability to form compound transposons contributes to the sequestering and dispersion of accessory genes, such as those specifying resistance to antibiotics, virulence, and various catabolic activities. The simplest mobile elements are the bacterial insertion sequences (ISs), which typically harbor one or two open reading frames (ORF) coding for the transposase (Tpase). More than 2,400 ISs have been described and classified into families (IS Finder, http://www-is.biotoul.fr/) on the basis of similarities in their genetic organization and Tpases (30). The terminal inverted repeats (IRs) are essential for the transposition of most ISs. The IRs, together with the Tpase, form a complex where the cleavage and strand transfer reactions occur. The IRs generally contain two functional modules: the internal region serves as the binding site of Tpase, while the terminal part is required for DNA cleavage and the strand transfer process (2). Besides these principal cis-acting elements, some ISs carry additional regulatory DNA sequences in the IRs or in the subterminal regions (18).The IS30 family currently comprises more than 80 elements distributed throughout the Gram-positive and Gram-negative bacteria and the Archaea (IS Finder, http://www-is.biotoul.fr). IS30 (1, 5), the founding element of the family, is 1,221 bp long and has 26-bp imperfect IRs (the left end of the IR [IRL] and the right end of the IR [IRR]; Fig. Fig.1A)1A) and one ORF with a coding capacity for a 44.3-kDa Tpase. The element has a preference for two distinct types of target sequences: the natural hot spots (HSs), characterized by a 24-bp symmetric consensus (23), and the IRs of the element itself (21, 22). Potential helix-turn-helix motifs (HTH) responsible for HS and IR targeting are located in the N-terminal region of the Tpase (19). While the first motif, HTH1, is required only for transposition into the HS sequences, the conserved H-HTH2 motif is essential for both IR and HS targeting (15, 19).Open in a separate windowFIG. 1.Transposition assays for comparing the IS30-based transposons composed of simple IRs. (A) Comparison of the IS30 IR sequences. Dots indicate matching bases. (B) Schematic representation of the intermolecular transposition pathway. The graph shows the two major steps characteristic for IS30 transposition (steps 1 and 2). The transposon donor plasmid and its derivative, the circular transposon (thin line), carry the 26-bp IRs of IS30 (boxes with open and filled triangles representing IRL and IRR, respectively). The Cmr gene flanking the transposon in the donor plasmid is shown as a gray box. The target plasmid (dotted line) carries the GOHS hot spot sequence (cross-hatched box). (C) Transposition frequencies of IS30-based transposons with different combinations of the IRs. The graph shows the overall frequency of transposition into the hot spot (steps 1 and 2) and the frequency of the major steps assayed separately. Data were obtained from at least three parallel experiments.IS30 transposition occurs through two major steps (14, 24) (Fig. (Fig.1B).1B). The first is the formation of an active intermediate by joining of the IRs. This process involves the Tpase-catalyzed cleavage of one strand at the 3′ IS end, which then attacks the same strand 2 bp outside the other IR. This strand transfer generates a single-strand bridge between the ends and leads to a figure-eight structure (33). This active transposition intermediate carrying the joined IRs probably proceeds via replicative resolution, as described for IS911 (11, 25) and IS2 (16). The resolution can lead to the circularization of a single IS or to the formation of a head-to-tail repeat of two IS30 copies. In the second step of transposition, the active forms interact with the target DNA, resulting in the known transposition products: simple insertion, deletion, inversion, or replicon fusion (14, 24).In this work, we describe the modularity of the IR ends of IS30 by analyzing several mutants. According to our results, the IS30 IRs can be divided into functional regions that are differently involved in the main transposition steps. We show that positions 2 and 3 play a pivotal role in cleavage of the ends and, consequently, in their donor function. While the terminal part (1 to 17 bp) of the IRs is indispensable for both major steps, the internal region, i.e., the binding site for the N-terminal part of Tpase (20 to 26 bp), appears to be required only for the junction formation. Although the exact role of the terminal part of IRs is less clear, several mutations in this region considerably affected both the junction formation and integration. The fact that the internal IR region is not involved in the integration suggests that the Tpase binds to other sequences during this reaction.  相似文献   
107.
Formins are involved in a wide range of cellular processes that require the remodeling of the actin cytoskeleton. Here, we have analyzed a novel Drosophila formin, belonging to the recently described DAAM subfamily. In contrast to previous assumptions, we show that DAAM plays no essential role in planar cell polarity signaling, but it has striking requirements in organizing apical actin cables that define the taenidial fold pattern of the tracheal cuticle. These observations provide evidence the first time that the function of the taenidial organization is to prevent the collapse of the tracheal tubes. Our results indicate that although DAAM is regulated by RhoA, it functions upstream or parallel to the non-receptor tyrosine kinases Src42A and Tec29 to organize the actin cytoskeleton and to determine the cuticle pattern of the Drosophila respiratory system.  相似文献   
108.
Synaptic vesicle fusion is catalyzed by assembly of synaptic SNARE complexes, and is regulated by the synaptic vesicle GTP-binding protein Rab3 that binds to RIM and to rabphilin. RIM is a known physiological regulator of fusion, but the role of rabphilin remains obscure. We now show that rabphilin regulates recovery of synaptic vesicles from use-dependent depression, probably by a direct interaction with the SNARE protein SNAP-25. Deletion of rabphilin dramatically accelerates recovery of depressed synaptic responses; this phenotype is rescued by viral expression of wild-type rabphilin, but not of mutant rabphilin lacking the second rabphilin C2 domain that binds to SNAP-25. Moreover, deletion of rabphilin also increases the size of synaptic responses in synapses lacking the vesicular SNARE protein synaptobrevin in which synaptic responses are severely depressed. Our data suggest that binding of rabphilin to SNAP-25 regulates exocytosis of synaptic vesicles after the readily releasable pool has either been physiologically exhausted by use-dependent depression, or has been artificially depleted by deletion of synaptobrevin.  相似文献   
109.
First encounters--deployment of defence-related natural products by plants   总被引:1,自引:0,他引:1  
Plant-derived natural products have important functions in ecological interactions. In some cases these compounds are deployed to sites of pathogen challenge by vesicle-mediated trafficking. Polar vesicle trafficking of natural products, proteins and other, as yet uncharacterized, cargo is emerging as a common theme in investigations of diverse disease resistance mechanisms in plants. Root-derived natural products can have marked effects on interactions between plants and soilborne organisms, for example by serving as signals for initiation of symbioses with rhizobia and mycorrhizal fungi. They may also contribute to competitiveness of invasive plant species by inhibiting the growth of neighbouring plants (allelopathy). Very little is known about the mechanisms of release of natural products from aerial plant parts or from roots, although there are likely to be commonalities in these processes. There is increasing evidence to indicate that pathogens and symbionts can manipulate plant endomembrane systems to suppress host defence responses and facilitate accommodation within plant cells. The relationship between secretory processes and plant interactions forms the focus of this review, which brings together different aspects of the deployment of defence-related natural products by plants.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号