首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   9篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   11篇
  2020年   10篇
  2019年   19篇
  2018年   11篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   14篇
  2013年   19篇
  2012年   23篇
  2011年   16篇
  2010年   12篇
  2009年   10篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   10篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有239条查询结果,搜索用时 31 毫秒
81.
Tissue kallikrein (KLK1) is a kinin-forming serine protease synthesized in many organs including arteries and kidney. Study of the physiological role of KLK1 has benefited from the availability of mouse and human genetic models of KLK1 deficiency, through engineering of KLK1 mouse mutants and discovery of a major polymorphism in the human KLK1 gene that induces a loss of enzyme activity. Studies in KLK1-deficient mice and human subjects partially deficient in KLK1 have documented its critical role in arterial function in both species. KLK1 is also involved in the control of ionic transport in the renal tubule, an action that may not be kinin-mediated. Studies of experimental diseases in KLK1-deficient mice have revealed cardio- and nephro-protective effects of KLK1 and kinins in acute cardiac ischemia, post-ischemic heart failure, and diabetes. Potential clinical and therapeutic developments are discussed.  相似文献   
82.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   
83.
84.
The determination of the myocardium’s tissue properties is important in constructing functional finite element (FE) models of the human heart. To obtain accurate properties especially for functional modeling of a heart, tissue properties have to be determined in vivo. At present, there are only few in vivo methods that can be applied to characterize the internal myocardium tissue mechanics. This work introduced and evaluated an FE inverse method to determine the myocardial tissue compressibility. Specifically, it combined an inverse FE method with the experimentally-measured left ventricular (LV) internal cavity pressure and volume versus time curves. Results indicated that the FE inverse method showed good correlation between LV repolarization and the variations in the myocardium tissue bulk modulus K (K = 1/compressibility), as well as provided an ability to describe in vivo human myocardium material behavior. The myocardium bulk modulus can be effectively used as a diagnostic tool of the heart ejection fraction. The model developed is proved to be robust and efficient. It offers a new perspective and means to the study of living-myocardium tissue properties, as it shows the variation of the bulk modulus throughout the cardiac cycle.  相似文献   
85.
There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose, the world's most abundant natural, renewable, biodegradable polymer, is a classical example of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. This quite "primitive" polymer can be used to create high performance nanocomposites presenting outstanding properties. This reinforcing capability results from the intrinsic chemical nature of cellulose and from its hierarchical structure. Aqueous suspensions of cellulose crystallites can be prepared by acid hydrolysis of cellulose. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. During the past decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrixes.  相似文献   
86.
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.  相似文献   
87.
Plasmonics - Detection of diphtheria toxin (DT) which is produced by Corynebacterium diphtheria, a zoonotic pathogen and a leading cause of diphtheria, is the critical step in the clinical...  相似文献   
88.
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice.  相似文献   
89.
Traditional methods to generate CHO cell lines rely on random integration(s) of the gene of interest and result in unpredictable and unstable protein expression. In comparison, site‐specific recombination methods increase the recombinant protein expression by inserting transgene at a locus with specific expression features. PhiC31 serine integrase, catalyze unidirectional integration that occurs at higher frequency in comparison with the reversible integration carried out by recombinases such as Cre. In this study, using different ratios of phiC31 serine integrase, we evaluated the phiC31 mediated gene integration for expression of a humanized IgG1 antibody (mAb0014) in CHO‐S cells. Light chain (LC) and heavy chain (HC) genes were expressed in one operon under EF1α promoter and linked by internal ribosome entry site (IRES) element. The clonal selection was carried out by limiting dilution. Targeted integration approach increased recombinant protein yield and stability in cell pools. The productivity of targeted cell pools was about 4 mg/L and about 40 µg/L in the control cell pool. The number of integrated transgenes was about 19 fold higher than the control cells pools. Our results confirmed that the phiC31 integrase leads to mAb expression in more than 90% of colonies. The productivity of the PhiC31 integrated cell pools was stable for three months in the absence of selection as compared with conventional transfection methods. Hence, utilizing PhiC31 integrase can increase protein titer and decrease the required time for protein expression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1570–1576, 2016  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号