首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   50篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   9篇
  2018年   12篇
  2017年   8篇
  2016年   13篇
  2015年   25篇
  2014年   28篇
  2013年   53篇
  2012年   54篇
  2011年   47篇
  2010年   33篇
  2009年   25篇
  2008年   58篇
  2007年   46篇
  2006年   35篇
  2005年   28篇
  2004年   45篇
  2003年   34篇
  2002年   31篇
  2001年   4篇
  2000年   15篇
  1999年   16篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1975年   4篇
  1974年   3篇
  1968年   3篇
  1967年   3篇
  1964年   2篇
  1935年   2篇
排序方式: 共有773条查询结果,搜索用时 15 毫秒
21.
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.  相似文献   
22.
23.
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective against age‐related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF‐1Ea and MLC/IGF‐1Eb mice during aging. These data suggest that IGF‐1 is a promising therapeutic agent in staving off advancing muscle weakness.  相似文献   
24.
NOD2 plays an important role in the innate immunity of the intestinal tract. By sensing the muramyl dipeptide (MDP), a bacterial wall component, NOD2 triggers the NF-kappaB signaling pathway and promotes the release of proinflammatory cytokines such as interleukin-8. Mutations in Nod2 (1007FS, R702W, G908R) impinge on NOD2 functions and are associated with the pathogenesis of Crohn disease, a chronic inflammatory bowel disease. Although NOD2 is usually described as a cytosolic receptor for MDP, the protein is also localized at the plasma membrane, and the 1007FS mutation delocalizes NOD2 to the cytoplasm (Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005) J. Cell Biol. 170, 21-26; McDonald, C., Chen, F. F., Ollendorff, V., Ogura, Y., Marchetto, S., Lecine, P., Borg, J. P., and Nunez, G. (2005) J. Biol. Chem. 280, 40301-40309). In this study, we demonstrate that membrane-bound versions of NOD2 and Crohn disease-associated mutants R702W and G908R are capable of responding to MDP and activating the NF-kappaB pathway from this location. In contrast, the 1007FS mutant remains unable to respond to MDP from the plasma membrane. We also show that NOD2 promotes the membrane recruitment of RICK, a serine-threonine kinase involved in NF-kappaB activation downstream of NOD2. Furthermore, the artificial attachment of RICK at the plasma membrane provokes a constitutive and strong activation of the NF-kappaB pathway and secretion of interleukin-8 showing that optimal RICK activity depends upon its subcellular localization. Finally, we show that endogenous RICK localizes at the plasma membrane in the THP1 cell line. Thus, our data suggest that NOD2 is responsible for the membrane recruitment of RICK to induce a regulated NF-kappaB signaling and production of proinflammatory cytokines.  相似文献   
25.
Antibody response to phosphorylcholine, an immunodominant epitope of Streptococcus pneumoniae R36a (Pn), is characterized by a public idiotype, T15, that is expressed on a large proportion of antibody molecules produced by all mouse inbred strains. The ability of the immune system to produce an autologous antibody to T15 upon immunization with Pn vaccine was investigated using a modified ELISA plaque assay for detection of single antibody-forming cells (AFC). The limit of ELISA assay for detection of specific anti-T15 AFC is approximately 300 cells/spleen. However, our studies failed to detect any autologous anti-T15 AFC in the course of the primary antibody response to Pn vaccine in young/adult (2-4 months) BALB/c and C57BL/6 mice. Aged mice (20-22 months) also failed to develop any specific auto-anti-T15 AFC upon the primary Pn immunization, despite the fact that the anti-Pn response in these animals changes both quantitatively and qualitatively. In order to generate specific anti-T15 AFC, BALB/c mice had to be immunized repeatedly with Pn vaccine (four weekly injections) or immunized directly with T15 protein in CFA. Different results were obtained with D1.LP mice that are low responders to Pn and express lower levels of T15 Id as compared to BALB/c. Young D1.LP mice produced high numbers of auto-anti-T15 AFC of both IgM and IgG isotypes following a single immunization with Pn vaccine. The kinetics of auto-anti-T15 response in D1.LP mice was similar to that of the antigen-specific response. These results demonstrate that the ability of the immune network to produce autologous antibody to a shared Id depends on the genetic makeup of the host, and that this response may be regulated by the level of Id expression.  相似文献   
26.
In steroid hydroxylation system in adrenal cortex mitochondria, NADPH-adrenodoxin reductase (AR) and adrenodoxin (Adx) form a short electron-transport chain that transfers electrons from NADPH to cytochromes P-450 through FAD in AR and [2Fe-2S] cluster in Adx. The formation of [AR/Adx] complex is essential for the electron transfer mechanism in which previous studies suggested that AR tryptophan (Trp) residue(s) might be implicated. In this study, we modified AR Trps by N-bromosuccinimide (NBS) and studied AR binding to Adx by a resonant mirror biosensor. Chemical modification of tryptophans caused inhibition of electron transport. The modified protein (AR*) retained the native secondary structure but showed a lower affinity towards Adx with respect to AR. Activity measurements and fluorescence data indicated that one Trp residue of AR may be involved in the electron transferring activity of the protein. Computational analysis of AR and [AR/Adx] complex structures suggested that Trp193 and Trp420 are the residues with the highest probability to undergo NBS-modification. In particular, the modification of Trp420 hampers the correct reorientation of AR* molecule necessary to form the native [AR/Adx] complex that is catalytically essential for electron transfer from FAD in AR to [2Fe-2S] cluster in Adx. The data support an incorrect assembly of [AR*/Adx] complex as the cause of electron transport inhibition.  相似文献   
27.
One hundred ninety-six patients treated for oral cancer between 1992 and 1999 self-scored their speech, chewing, and swallowing using a new self-questionnaire (Functional Intraoral Glasgow Scale) developed at Canniesburn Hospital, Glasgow, to assess the functional efficiency of patients treated for intraoral cancer. The patients were distributed into 12 homogeneous groups, according to the site and size of surgical resection, carefully mapped out on standard diagrams of the oral cavity. The functional outcome for chewing and swallowing was correlated to the site and size of resected tissue, to the reconstruction modality, and to radiotherapy and compared with the speech quality. The general trend is very similar for both chewing and swallowing; the smaller the resections, the better the functional outcome. Chewing was mostly affected by resections of the floor of the mouth, whereas swallowing was mostly affected by demolition of the base of the tongue and of the retromolar trigone. Speech showed a better postoperative recovery than chewing and swallowing. The reconstruction modality did not influence the eventual outcome for either function. Radiotherapy in combination with surgery is a negative functional prognostic factor. A correlation between site and size of excision and functional outcome is presented using color multiple-view diagrams for immediate appreciation to identify positive and negative prognostic factors.  相似文献   
28.
The aim of this study was to investigate the nonthermal effects of radiofrequency (RF) fields on human immune cells exposed to a Global System for Mobile Communication (GSM) signal generated by a commercial cellular phone and by a sinusoidal non-modulated signal. To assess whether mobile phone RF-field exposure affects human immune cell functions, peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed in vitro to a 900 MHz GSM or continuous-wave (CW) RF field 1 h/day for 3 days in a transverse electromagnetic mode (TEM) cell system (70-76 mW/kg average specific absorption rate, SAR). The cells were cultured for 48 or 72 h, and the following end points were studied: (1) mitogen-induced proliferation; (2) cell cycle progression; (3) spontaneous and 2-deoxy-D-ribose (dRib)-induced apoptosis; (4) mitochondrial membrane potential modifications during spontaneous and dRib-induced-apoptosis. Data obtained from cells exposed to a GSM-modulated RF field showed a slight decrease in cell proliferation when PBMCs were stimulated with the lowest mitogen concentration and a slight increase in the number of cells with altered distribution of phosphatidylserine across the membrane. On the other hand, cell cycle phases, mitochondrial membrane potential and susceptibility to apoptosis were found to be unaffected by the RF field. When cells were exposed to a CW RF field, no significant modifications were observed in comparison with sham-exposed cells for all the end points investigated.  相似文献   
29.
30.
A large amount of highly purified hydroxytyrosol (91-94% in weight) is obtained in short time by a simple biotransformation of Olea europaea leaf extract by a partially purified hyperthermophilic beta-glycosidase immobilized on chitosan support. The biotransformation conditions have been modulated for increasing the hydroxytyrosol yield, whilst chitosan and chitin matrices are used as adsorbent materials in liquid phase hydroxytyrosol extraction from the biotransformed mixtures. Natural and non-toxic hydroxytyrosol has been by this way produced from a vegetal source, and this compound appeared for the first time highly purified by natural and biocompatible safe biopolymers in comparison to previous results. Moreover, the GC analyses have displayed that the eluates from a two-step bioreactor have qualitative composition very similar to that of the extra-virgin olive oil polar fraction. The proposed bioreactor could also find application in the utilization of olive mill waste waters (OMWW), medium rich in large amounts of oleuropein, which can be converted in pharmacologically active compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号