首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   53篇
  701篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   4篇
  2016年   11篇
  2015年   18篇
  2014年   24篇
  2013年   26篇
  2012年   30篇
  2011年   32篇
  2010年   27篇
  2009年   9篇
  2008年   24篇
  2007年   19篇
  2006年   21篇
  2005年   15篇
  2004年   28篇
  2003年   21篇
  2002年   29篇
  2001年   18篇
  2000年   23篇
  1999年   17篇
  1998年   5篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   14篇
  1991年   15篇
  1990年   15篇
  1989年   11篇
  1988年   12篇
  1987年   14篇
  1986年   9篇
  1985年   8篇
  1984年   13篇
  1983年   7篇
  1982年   6篇
  1981年   10篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1974年   4篇
  1970年   6篇
  1967年   4篇
  1965年   4篇
  1935年   3篇
排序方式: 共有701条查询结果,搜索用时 38 毫秒
581.
To identify immunologic factors that modulate the risk of herpes zoster (HZ), we compared varicella-zoster virus (VZV)-specific and nonspecific T-cell subpopulations of 47 HIV-infected children before they developed HZ with those of 141 VZV-positive HZ-negative matched controls. Compared with controls, HZ cases had lower VZV-specific CD8(+) CD107a(+) cell percentages independently of CD4(+) percentages or HIV loads, suggesting that VZV-specific cytotoxic T cells are protective against HZ. In contrast, high nonspecific regulatory and activated T cells were associated with an increased risk of HZ.  相似文献   
582.
583.
The evolutionarily conserved Ras/Raf/MEK/ERK pathway is thought to be essential for proliferation of eukaryotic cells. The human multiple myeloma (MM) cell line 8226 encodes an activated K-ras allele and proliferates without requirement for the main MM growth and survival factor IL-6. Surprisingly, the addition of the MEK1/2 inhibitors PD98059 or U0126 to 8226 cultures at doses that block virtually all ERK1/2 activity had minimal effects on the rapid proliferation of this cell line. In contrast, proliferation of the IL-6-dependent MM cell line, ANBL-6 was blocked by PD98059. Levels of activated forms of the other classical MAP kinases (JNK and p38) were very low during MM cell proliferation and, therefore, do not substitute for the mitogenic activities normally regulated by ERK kinases. These data demonstrate that proliferation of 8226 cells does not require ERK1/2 activity, and suggest that IL-6-independent growth of MM may correlate with independence from a requirement for ERK activity. Other signal transduction pathways that appear to regulate cell cycle progression in these cells were examined.  相似文献   
584.
We examine the utility of the action potential (AP) duration (APD) restitution curve slope in predicting the onset of electrical alternans when electrotonic and memory effects are considered. We develop and use two ionic cell models without memory that have the same restitution curve with slope >1 but different AP shapes and, therefore, different electrotonic effects. We also study a third cell model that incorporates short-term memory of previous cycle lengths, so that it has a family of S1-S2 restitution curves as well as a dynamic restitution curve with slope >1. Our results indicate that both electrotonic and memory effects can suppress alternans, even when the APD restitution curve is steep. In the absence of memory, electrotonic currents related to the shape of the AP, as well as conduction velocity restitution, can affect how alternans develops in tissue and, in some cases, can prevent its induction entirely, even when isolated cells exhibit alternans. When short-term memory is included, alternans may not occur in isolated cells, despite a steep APD restitution curve, and may or may not occur in tissue, depending on conduction velocity restitution. We show for the first time that electrotonic and memory effects can prevent conduction blocks and stabilize reentrant waves in two and three dimensions. Thus we find that the slope of the APD restitution curve alone does not always well predict the onset of alternans and that incorporating electrotonic and memory effects may provide a more useful alternans criterion.  相似文献   
585.
Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea‐ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence‐induction kinetics. Sea‐ice algae exhibited the least photosynthetic stress when maintained in 35‰ and 51‰ salinity, whereas 16, 21, and 65‰ treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea‐ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast‐induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea‐ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing.  相似文献   
586.
An atomic force microscope has been used to study the adhesion of Bacillus mycoides spores to a hydrophilic glass surface and a hydrophobic-coated glass surface. AFM images of spores attached to the hydrophobic-coated mica surface allowed the measurement of spore dimensions in an aqueous environment without desiccation. The spore exosporium was observed to be flexible and to promote the adhesion of the spore by increasing the area of spore contact with the surface. Results from counting procedures using light microscopy matched the density of spores observed on the hydrophobic-coated glass surface with AFM. However, no spores were observed on the hydrophilic glass surface with AFM, a consequence of the weaker adhesion of the spores at this surface. AFM was also used to quantify directly the interactions of B. mycoides spores at the two surfaces in an aqueous environment. The measurements used "spore probes" constructed by immobilizing a single spore at the apex of a tipless AFM cantilever. The data showed that stretching and sequential bond breaking occurred as the spores were retracted from the hydrophilic glass surface. The greatest spore adhesion was measured at the hydrophobic-coated glass surface. An attractive force on the spores was measured as the spores approached the hydrophobic-coated surface. At the hydrophilic glass surface, only repulsive forces were measured during the approach of the spores. The AFM force measurements were in qualitative agreement with the results of a hydrodynamic shear adhesion assay that used a spinning disk technique. Quantitatively, AFM measurements of adhesive force were up to 4 x 10(3) times larger than the estimates made using the spinning disk data. This is a consequence of the different types of forces applied to the spore in the different adhesion assays. AFM has provided some unique insights into the interactions of spores with surfaces. No other instrument can make such direct measurements for single microbiological cells.  相似文献   
587.
Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114.  相似文献   
588.
589.
Spatial synchrony is widespread in natural populations but the mechanisms that underpin it are not yet fully understood. Two key biotic drivers of spatial synchrony have been identified: dispersal and trophic interactions (e.g. natural enemies). We used spatially structured, patchy bacterial populations to show that although increased dispersal always enhanced spatial synchrony of fluctuations in bacterial abundance, this effect was far stronger in the presence of a bacteriophage parasite. Bacteriophages drove strong within patch fluctuations in bacterial abundance that became phase locked through dispersal. Furthermore, the way in which stability, measured as constancy, responded to increasing dispersal was qualitatively different depending on whether parasites were present or not. Patch-level constancy decreased with dispersal in the presence of parasites, whereas dispersal increased patch-level constancy in the absence of parasites. Population-level constancy also decreased with dispersal in the presence of parasites, but was unaffected by dispersal in the absence of parasites. These contrasting patterns were likely due to the different role played by dispersal in the presence and absence of parasites, synchronizing dynamics in the former case and averaging stochastic fluctuations in the latter. Taken together, our findings suggest that dispersal and natural enemies can interact to drive spatially synchronous population fluctuations that decrease stability at both the patch and population level.  相似文献   
590.
Wolbachia, a group of maternally inherited intracellular parasitic bacteria, alter host reproduction, including the induction of thelytokous parthenogenesis, feminization of genetic males, son killing and, most commonly, the induction of cytoplasmic incompatibility (CI), in a diverse array of arthropods. CI can result in infertility and has attracted attention because of its potential in biological control and as an agent in speciation. Although there has been some analysis of overall infection rates in arthropods and within individual insect orders, there has been little exploration of within-species variation. In this study, primers specific for the ftsZ gene of Wolbachia were used to amplify it from different geographical samples of the European raspberry beetle (Byturus tomentosus), confirming the presence of Wolbachia. More than 99% of UK individuals were found to be infected with Wolbachia and 97% of these B. tomentosus beetles harboured multiple infections. Preliminary analysis of B. tomentosus beetles from continental European populations revealed a lower level of infection (24%) than those from the UK. Phylogenetic analysis using the ftsZ DNA sequences places Wolbachia from B. tomentosus into a new clade (Abt) within the A division, with some revisions to the existing Wolbachia phylogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号