首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19451篇
  免费   1765篇
  国内免费   2149篇
  23365篇
  2024年   55篇
  2023年   291篇
  2022年   607篇
  2021年   982篇
  2020年   716篇
  2019年   860篇
  2018年   885篇
  2017年   588篇
  2016年   810篇
  2015年   1246篇
  2014年   1521篇
  2013年   1580篇
  2012年   1896篇
  2011年   1712篇
  2010年   1104篇
  2009年   1048篇
  2008年   1117篇
  2007年   1055篇
  2006年   861篇
  2005年   706篇
  2004年   632篇
  2003年   543篇
  2002年   461篇
  2001年   309篇
  2000年   295篇
  1999年   269篇
  1998年   188篇
  1997年   154篇
  1996年   144篇
  1995年   96篇
  1994年   122篇
  1993年   66篇
  1992年   86篇
  1991年   68篇
  1990年   61篇
  1989年   40篇
  1988年   34篇
  1987年   21篇
  1986年   16篇
  1985年   25篇
  1984年   13篇
  1983年   16篇
  1982年   15篇
  1980年   4篇
  1978年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1968年   3篇
  1965年   8篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
An indirect photometric ion chromatographic method for the simultaneous determination of chloride, nitrate and sulfate ions was developed and applied to the determination of anions, mainly nitrate, in the alga Haematococcus pluvialis culture media. Using phthalic acid/sodium tetraborate aqueous solution as the mobile phase, anions can be detected indirectly by a UV detector. The calibration curves for these anions gave good linearity from 1 to 1000 g ml–1.  相似文献   
992.
翅多型现象是昆虫非遗传多型性的一种表现,包括不具飞行能力的短翅型或无翅型,以及可以进行长距离迁飞的长翅型或有翅型。翅多型现象常发生在可以携带病原并将其传播给植物宿主的媒介昆虫中,对植物病害的时空分布与暴发有重要影响。本文从翅型分化的遗传规律、诱导因素、分子机制和伴随翅型分化的其他生理表现4个方面,对植物病原主要传播媒介蚜虫和飞虱的翅型分化研究进行综述和梳理。昆虫翅型分化的诱导因素主要包括温度、湿度和光周期等非生物因素以及虫口密度、宿主营养、病毒等生物因素;而其内在的分子机制大多是通过胰岛素/胰岛素样生长因子信号(IIS)通路、c-Jun氨基末端激酶(c-Jun NH2-terminal kinase, JNK)信号通路、Wingless和嗅觉受体SaveOrco等调控。翅型分化的同时伴随着生理状态的变化,表现为短翅型具有更强的繁殖能力和长翅型含有更丰富的飞行肌结构成分。目前,昆虫翅型分化的研究尚不够完善,有许多需要解答的问题,如找到胰岛素/胰岛素样生长因子信号通路中真正发挥功能的靶基因,JNK如何调控翅型分化以及虫媒病毒影响媒介昆虫翅型的分子机理。本综述可为控制虫...  相似文献   
993.
l-Arabinose isomerase (l-AI) catalyzes the isomerization of l-arabinose to l-ribulose and d-galactose to d-tagatose. Most reported l-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial d-tagatose production. Lactobacillus fermentum l-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for d-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, d-galactose was isomerized into d-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other l-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of l-AIs that can be modified for desired optimum pH and better pH stability, which are useful in d-tagatose bioproduction.  相似文献   
994.
山区夏季地表温度的影响因素——以泰山为例   总被引:2,自引:0,他引:2  
以泰山为例,应用夏季的Landsat 5的TM6为基本数据源,基于单窗算法定量反演了泰山地表面温度(LST),在此基础上首先探讨了LST与地形因子的关系,然后比较了归一化水汽指数(NDMI)和归一化植被指数(NDVI)在表达山区LST上的效力,最后利用逐步回归分析法,构建出LST与地形因子、NDMI的回归方程,应用偏相关系数,得出各个因子对LST的影响程度。结果表明:1)在地形因子中,影响LST的主要因素是海拔,随海拔升高呈自然对数形式降低,相比而言,坡度、坡向以及太阳入射能量的影响则很小;2)在没有水体时,NDVI与NDMI都能有效地表达山区的LST,LST与NDVI间是二次项负相关关系,与NDMI间是线性负相关关系,在表达LST上NDMI比NDVI更有效;3)综合分析表明,地表水汽特征是其表面温度最主要的影响因素,其次是海拔。研究结果将为山区地表温度空间分异性特征及形成机制的研究提供科学的参考。  相似文献   
995.

Background and aims

The rice production is experiencing a shift from conventionally seedling-transplanted (TPR) to direct-seeded (DSR) cropping systems in Southeast Asia. Besides the difference in rice crop establishment, water regime is typically characterized as water-saving moist irrigation for DSR and flooding-midseason drainage-reflooding and moist irrigation for TPR fields, respectively. A field experiment was conducted to quantify methane (CH4) and nitrous oxide (N2O) emissions from the DSR and TPR rice paddies in southeast China.

Methods

Seasonal measurements of CH4 and N2O fluxes from the DSR and TPR plots were simultaneously taken by static chamber-GC technique.

Results

Seasonal fluxes of CH4 averaged 1.58 mg m?2 h?1 and 1.02 mg m?2 h?1 across treatments in TPR and DSR rice paddies, respectively. Compared with TPR cropping systems, seasonal N2O emissions from DSR cropping systems were increased by 49 % and 46 % for the plots with or without N application, respectively. The emission factors of N2O were estimated to be 0.45 % and 0.69 % of N application, with a background emission of 0.65 and 0.95 kg N2O-N ha?1 under the TPR and DSR cropping regimes, respectively. Rice biomass and grain yield were significantly greater in the DSR than in the TPR cropping systems. The net global warming potential (GWP) of CH4 and N2O emissions were comparable between the two cropping systems, while the greenhouse gas intensity (GHGI) was significantly lower in the DSR than in the TPR cropping systems.

Conclusions

Higher grain yield, comparable GWP, and lower GHGI suggest that the DSR instead of conventional TPR rice cropping regime would weaken the radiative forcing of rice production in terms of per unit of rice grain yield in China, and DSR rice cropping regime could be a promising rice development alternative in mainland China.  相似文献   
996.
Omega-3 fatty acids are essential fatty acids for human health. Therefore, increasing both percentage of omega-3 and a better fatty acid profile in fish fillets is one of the breeding goals in aquaculture. However, it is difficult to increase the omega-3 content in fish fillets, as the phenotypic selection of these traits is not easily feasible. To facilitate the genetic improvement of the Asian seabass for optimal fatty acid profiles, a genome-wide scan for quantitative trait loci (QTL) affecting fatty acid level in the flesh of the Asian seabass was performed on an F2 family containing 314 offspring. All family members were genotyped using 123 informative microsatellites and 22 SNPs. High percentages of n-3 polyunsaturated fatty acids (PUFA), especially C22:6 (DHA 16.48?±?3.09 %) and C20:5 (EPA 7.19?±?0.86 %) were detected in the flesh. One significant and 54 suggestive QTL for different fatty acids and a water content trait were detected on the whole genome. QTL for C18:0b was located on linkage groups (LG) 5. QTL for total n-3 PUFA content in flesh were mapped onto LG6 and LG23 with the phenotypic variance explained ranging from 3.8 to 6.3 %. Four QTL for C22:6 were detected on LG6, LG23, and LG24, explaining 3.9 to 4.9 % of the phenotypic variance, respectively. Mapping of QTL for contents of different fatty acids is the first step towards improving the omega-3 content in the fillets of fish by using marker-assisted selection and is important for understanding the biology of fatty acid deposition.  相似文献   
997.
Activation of the dopamine (DA) D2 receptor inhibits glucose-stimulated insulin secretion in isolated rodent islets in vitro; however, no information is available regarding the cellular localization of DA receptors (DRs, including D1-D5 receptors) in pancreatic islets in situ. We investigate the protein expression and cellular localization of five types of DRs in pancreatic islets by means of Western blotting and double-labeling immunofluorescence in both normal control and alloxan-induced type 1 diabetes model (T1DM) rats. In control rats, D1 immunoreactivity (-IR) was distributed in the core of the islet and co-localized with insulin-IR, D2-IR was peripherally distributed and found only in somatostatin-immunoreactive cells and D5-IR was co-localized with glucagon-IR and pancreatic polypeptide-IR. No IR for either the D3 or D4 receptor was observed in rat islets. The protein level of the D1 receptor was reduced in T1DM rats (D1/D-glyceraldehyde-3-phosphate dehydrogenase [GAPDH], 0.63?±?0.05 in control rats compared with 0.16?±?0.03 in T1DM rats, n?=?8, P?n?=?8, P?=?0.42) or the D5 receptor (D5/GAPDH, 0.50?±?0.04 compared with 0.47?±?0.04, n?=?8, P?=?0.58). The present study is the first clear demonstration of the protein expression and cellular localization of the D1, D2 and D5 receptors in rat pancreatic islets and provides crucial morphological evidence for further investigations of the underlying mechanism regarding the DA regulation of pancreatic endocrine function.  相似文献   
998.
The kinetics of cell growth and triterpenes production for liquid submerged fermentation of the medicinal mushroom Ganoderma lucidum were investigated. A kinetic model was developed based on the Logistic and Luedeking-Piret equations for cell growth, substrate consumption and triterpene formation. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta genetic algorithms. The mathematical model simulated the experimental data well and was capable of explaining the behavior of triterpenes production. The predictions of the kinetics from this model are very good both for normal fermentation kinetics under nitrogen limitation as well as for predictions of transitions to sluggish fermentations. The resulting model is very useful for scaling up liquid submerged fermentation of the mushroom G. lucidum and its application to the industrial production of triterpene.  相似文献   
999.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   
1000.
This study describes the generation and test of a genetic resource suited to identify determinants of cell biological traits in plants. The use of quantitative trait loci (QTL) mapping for a better genetic understanding of cell biological traits is still at an early stage, even for biotechnologically important cell properties, such as the dimensions of fiber cells. A common strategy, the mapping of QTLs in recombinant inbred line (RIL) populations, is limited by the fact that the existing RIL populations exploit only a small fraction of the existing natural variation. Here, we report the mapping of QTLs impacting on the length of fiber cells in Arabidopsis inflorescence stems in a newly generated RIL population derived from a cross between the accessions Berkeley and the little known Lz-0. Through inbreeding of individual F2 plants, a total of 159 new F8 lines were produced and genotyped with a set of 49 single nucleotide polymorphism markers. The population was successfully used not only for the mapping of three QTLs controlling fiber length, but also to map five QTL controlling flowering time under short and long-day conditions. Our study demonstrates the usefulness of this new genetic resource by mapping in it QTLs underlying a poorly explored cellular trait as well as an already better explored regulatory pathway. The new RIL population and an online platform for the continuous supplementation of genetic markers will be generally available to substantially broaden the genetic diversity through which loci with impact on plant quantitative traits can be identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号