首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19445篇
  免费   1761篇
  国内免费   2147篇
  23353篇
  2024年   55篇
  2023年   289篇
  2022年   606篇
  2021年   981篇
  2020年   716篇
  2019年   859篇
  2018年   885篇
  2017年   589篇
  2016年   810篇
  2015年   1244篇
  2014年   1522篇
  2013年   1579篇
  2012年   1895篇
  2011年   1709篇
  2010年   1101篇
  2009年   1048篇
  2008年   1118篇
  2007年   1052篇
  2006年   860篇
  2005年   706篇
  2004年   633篇
  2003年   543篇
  2002年   461篇
  2001年   309篇
  2000年   295篇
  1999年   271篇
  1998年   188篇
  1997年   154篇
  1996年   144篇
  1995年   96篇
  1994年   122篇
  1993年   66篇
  1992年   86篇
  1991年   68篇
  1990年   61篇
  1989年   40篇
  1988年   34篇
  1987年   21篇
  1986年   16篇
  1985年   25篇
  1984年   13篇
  1983年   16篇
  1982年   15篇
  1980年   4篇
  1978年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1968年   3篇
  1965年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
Kelch proteins are implicated in the pathogenesis of many human diseases, including cancer. Nasopharyngeal carcinoma (NPC) is a rare malignancy in most countries, but prevalent in southern China and certain areas of Southeast Asia. In this study, we identified Kelch Domain Containing 4 (KLHDC4), an orphan member of the kelch repeat superfamily, as a prognosis marker for NPC. We examined the expression of KLHDC4 in 168 NPC cases by immunohistochemical staining and found a substantially higher level of KLHDC4 in NPC biopsies compared to adjacent normal nasopharyngeal mucosa. KLHDC4 expression was significantly related to the T classification (P <0.05), N classification (P <0.05) and total staging (P <0.01) in NPC, and patients with higher KLHDC4 expression had poorer overall (P <0.01) and metastasis-free survival (P <0.05) rates. Knockout (KO) of KLHDC4 via CRISPR/Cas9-mediated gene editing in NPC cell line dramatically inhibited cell proliferation, colony formation in soft agar and tumor formation in nude mice. In addition, cell migration and invasion were also impaired by KLHDC4 depletion as revealed by wound healing and Transwell assay. Mechanically, loss of KLHDC4 markedly induced spontaneous apoptosis in NPC cells, as evidenced by increased levels of cleaved caspase-3 and cleaved PARP. Consistently, KLHDC4 knockout cell-derived xenografts also showed elevated cleaved caspase-3 and PARP but reduced Ki-67 staining. In conclusion, our results suggest that KLHDC4 promotes NPC oncogenesis by suppressing cellular apoptosis. Thus, KLHDC4 may serve as a prognosis biomarker and a potential therapeutic target for NPC.  相似文献   
112.
The treatment of squamous carcinoma, especially multidrug resistance (MDR) tumors, represents one of the most formidable challenges in oncology. In this study, integrin-mediated Pluronic-based micellar system (c(RGDyK)-FP-DP) was proposed as a drug delivery system to enhance the in vivo anti-tumor efficacy in MDR human squamous carcinoma (KBv)-bearing. Following the recognition by integrin proteins express on the cell surface, cellular uptake and in vitro anti-tumor efficacy of c(RGDyK)-FP-DP were better than conventional PF-DP in KBv cells. The tumor homing specificity and further in vivo anticancer efficacy of c(RGDyK)-FP-DP were performed using subcutaneous KBv tumor-bearing mice model, respectively. Compared with PF-DP, c(RGDyK)-FP-DP demonstrated more drug accumulation in tumor and relatively less drug accumulation in heart, and an extended median survival time in the KBv tumor-bearing mice model. Furthermore, preliminary in vivo subacute toxicity evaluation was also conducted by the measurement of histopathology, blood cell counts and clinical biochemistry parameters. Results showed that no obvious toxicity was observed to the hematological system or heart after a series of intravenous administration of c(RGDyK)-FP-DP. In conclusion, our results suggested that c(RGDyK) peptide conjugated Pluronic micelles could be a promising vehicle for enhancing the treatment of MDR human squamous carcinoma.  相似文献   
113.
Peronospora effusa is an obligate pathogen that causes downy mildew on spinach and is considered the most economically important disease of spinach. The objective of the current research was to assess genetic diversity of known historical races and isolates collected in 2014 from production fields in Yuma, Arizona and Salinas Valley, California. Candidate neutral single nucleotide polymorphisms (SNPs) were identified by comparing sequence data from reference isolates of known races of the pathogen collected in 2009 and 2010. Genotypes were assessed using targeted sequencing on genomic DNA extracted directly from infected plant tissue. Genotyping 26 historical and 167 contemporary samples at 46 SNP loci revealed 82 unique multi-locus genotypes. The unique genotypes clustered into five groups and the majority of isolates collected in 2014 were genetically closely related, regardless of source location. The historical samples, representing several races, showed greater genetic differentiation. Overall, the SNP data indicate much of the genotypic variation found within fields was produced during asexual development, whereas overall genetic diversity may be influenced by sexual recombination on broader geographical and temporal scales.  相似文献   
114.
115.
p72 is the member of the DEAD-box RNA helicase family, which can unwind double-stranded RNA and is efficient for microRNA (miRNA, miR) processing. However, its specific role in glioma has not been elucidated. First, the expression of p72 in glioma cell lines and tissues was explored using Western blot. To explore the role of p72 on glioma progression, adenovirus inhibiting p72 was transfected into A172 and T98G cells. Cell autophagy was determined using GFPLC3 dots, and cell apoptosis was determined using flow cytometry. The effect of Beclin1 was explored using GFP-LC3 dots, flow cytometry, and colony formation. The possible miRNAs that target the 3′-untranslated region (3′-UTR) of Beclin1 were predicted using TargetScan. Dual luciferase reporter assay was applied to determine whether these miRNAs bind to the 3′-UTR of Beclin1. The expression of p72 was significantly increased in glioma cell lines and tissues. Autophagy-related protein Beclin1 was found to be significantly enhanced when p72 was inhibited. The accumulation of GFP-LC3 dots was significant in cells transfected with ad-sh-p72 compared with ad-con. Colony formation capacity and cell apoptosis were also found to be significantly decreased with p72 inhibition. Furthermore, upregulation of Beclin1 contributes to A172 cell autophagy, invasion, and apoptosis. Overexpression of p72 induces increased miR-34-5p and miR-5195-3p expression in A172 and T98G cells. Beclin1 was the target gene of miR-34-5p and miR-5195-3p. In conclusion, we found for the first time that overexpression of p72 decreased Beclin1 expression partially by increasing miR-34-5p and miR-5195-3p expression in A172 and T98G cells.  相似文献   
116.
117.
118.
119.
120.
Chenopodium ambrosioides L. can tolerate high concentrations of manganese and has potential for its use in the revegetation of manganese mine tailings. Following a hydroponic investigation, transmission electron microscopy (TEM)-energy disperse spectroscopy (EDS) was used to study microstructure changes and the possible accumulation of Mn in leaf cells of C. ambrosioides in different Mn treatments (200, 1000, 10000 μmol·L?1). At 200 μmol·L?1, the ultrastructure of C. ambrosioides was clearly visible without any obvious damage. At 1000 μmol·L?1, the root, stem and leaf cells remained intact, and the organelles were clearly visible without any obvious damage. However, when the Mn concentration exceeded 1000 μmol·L?1 the number of mitochondria in root cells decreased and the chloroplasts in stem cells showed a decrease in grana lamellae and osmiophilic granules. Compared to controls, treatment with 1000 μmol·L?1 or 10000 μmol·L?1 Mn over 30 days, gave rise to black agglomerations in the cells. At 10000 μmol·L?1, Mn was observed to form acicular structures in leaf cells and intercellular spaces, which may be a form of tolerance and accumulation of Mn in C. ambrosioides. This study has furthered the understanding of Mn tolerance mechanisms in plants, and is potential for the revegetation of Mn-polluted soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号