首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27869篇
  免费   2520篇
  国内免费   3564篇
  2024年   91篇
  2023年   437篇
  2022年   874篇
  2021年   1450篇
  2020年   1066篇
  2019年   1303篇
  2018年   1313篇
  2017年   901篇
  2016年   1180篇
  2015年   1885篇
  2014年   2198篇
  2013年   2266篇
  2012年   2747篇
  2011年   2493篇
  2010年   1601篇
  2009年   1518篇
  2008年   1644篇
  2007年   1499篇
  2006年   1248篇
  2005年   1058篇
  2004年   944篇
  2003年   800篇
  2002年   660篇
  2001年   401篇
  2000年   400篇
  1999年   362篇
  1998年   258篇
  1997年   235篇
  1996年   203篇
  1995年   141篇
  1994年   157篇
  1993年   86篇
  1992年   100篇
  1991年   74篇
  1990年   72篇
  1989年   42篇
  1988年   40篇
  1987年   29篇
  1986年   17篇
  1985年   31篇
  1984年   17篇
  1983年   18篇
  1982年   27篇
  1980年   4篇
  1978年   5篇
  1974年   5篇
  1973年   7篇
  1972年   4篇
  1965年   9篇
  1950年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Peronospora effusa is an obligate pathogen that causes downy mildew on spinach and is considered the most economically important disease of spinach. The objective of the current research was to assess genetic diversity of known historical races and isolates collected in 2014 from production fields in Yuma, Arizona and Salinas Valley, California. Candidate neutral single nucleotide polymorphisms (SNPs) were identified by comparing sequence data from reference isolates of known races of the pathogen collected in 2009 and 2010. Genotypes were assessed using targeted sequencing on genomic DNA extracted directly from infected plant tissue. Genotyping 26 historical and 167 contemporary samples at 46 SNP loci revealed 82 unique multi-locus genotypes. The unique genotypes clustered into five groups and the majority of isolates collected in 2014 were genetically closely related, regardless of source location. The historical samples, representing several races, showed greater genetic differentiation. Overall, the SNP data indicate much of the genotypic variation found within fields was produced during asexual development, whereas overall genetic diversity may be influenced by sexual recombination on broader geographical and temporal scales.  相似文献   
922.
Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.  相似文献   
923.
包埋法固定化对硫氧化微生物菌群结构和功能的影响   总被引:1,自引:0,他引:1  
【目的】为探讨包埋法固定化过程对硫氧化菌群硫化物去除能力及菌群微生物群落结构的影响,【方法】以聚乙烯醇-海藻酸钠-活性炭为载体,对硫氧化菌群进行了固定化,并采用富含硫化物的无机盐培养基,对比固定化与非固定化硫氧化菌群对硫化物的氧化去除能力。同时,利用PCR-DGGE技术,探讨硫氧化菌群在固定化前后以及在硫化物氧化去除过程中微生物群落结构变化。【结果】在对硫氧化菌群进行固定化之后,12 h之内对硫化物的最大去除能力从1000 mg/L下降为600 mg/L。硫氧化菌群的微生物群落结构发生了明显变化,但菌群中的硫氧化菌Catenococcus thiocycli未受影响,硫氧化菌Thioclava pacifica在菌群中的地位反而得到了强化。【结论】受制于底物在载体材料中的扩散迁移效率,硫氧化菌群对硫化物的氧化去除能力在固定化之后有所下降。由于不同微生物对固定化形成的微环境的适应能力以及对载体附着能力的不同,固定化对硫氧化菌群的微生物群落结构产生较大影响。  相似文献   
924.
【目的】获得江苏沿海滩涂盐生药用植物中华补血草内生及根际具有1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性的细菌,研究其遗传多样性和潜在促生活性。【方法】从中华补血草和根际土壤分离筛选具有ACC脱氨酶活性的菌株,对其ACC脱氨酶活性定量检测,通过16S r RNA基因序列分析确定菌株系统发育地位。同时研究其固氮、溶磷、产植物生长素吲哚乙酸(IAA)及耐盐能力。【结果】分离筛选获得18株具有ACC脱氨酶活性的内生与根际细菌,定量检测发现其中有13株菌的ACC脱氨酶含量在20 nmolα-KA/(mg Pr·h)以上,有11株菌可以固氮,7株菌能够解磷,9株菌产生IAA。菌株的Na Cl盐耐受范围多数在0–13%之间。16S r RNA基因测序表明,活性菌株分属于7个属,多样性丰富,节杆菌属(Arthrobacter)为优势类群。其中菌株KLBMP 5180为节杆菌属的潜在新种。【结论】江苏沿海滩涂盐生药用植物中华补血草共生环境中具有丰富多样的具ACC脱氨酶活性的菌株,并存在潜在新物种资源,具有进一步研究价值。  相似文献   
925.
926.
In this work, a simple electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) based on rhombic dodecahedral Cu2O nanocrystals–graphene oxide–gold nanoparticles (rCu2O–GO–AuNPs). GO as the template and surfactant resulting in rCu2O exhibit improved rhombic dodecahedral structure uniformity and excellent electrochemical performance. Moreover, GO was found to be able to effectively improve the long stability of rCu2O on the electrode response. Under optimal conditions, the immunosensor showed a low limit of detection (0.004 ng ml−1) and a large linear range (0.01–120 ng ml−1). This work presents a potential alternative for the diagnostic applications of GO-supported special morphology materials in biomedicine and biosensors.  相似文献   
927.
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and is important for several biological processes. For GDH inhibitor screening, we developed a novel mono-sulfonated tetrazolium salt (EZMTT), which can be synthesized using H2O2 oxidation and purified easily on silica gel in large quantities. The EZMTT detection method showed linear dose responses to NAD(P)H, dehydrogenase concentration and cell numbers. In E. coli GDH assay, the EZMTT method showed excellent assay reproducibility with a Z factor of 0.9 and caused no false positives in the presence of antioxidants (such as BME). Using the EZMTT-formazan-NAD(P)H system, we showed that EGCG is a potent E. coli GDH inhibitor (IC50 45 nM) and identified that Ebselen, a multifunctional thioredoxin reductase inhibitor, inactivated E. coli GDH (IC50 213 nM). In cell-based assays at 0.5 mM tetrazolium concentration, EZMTT showed essentially no toxicity after a 3-day incubation, whereas 40% of inhibition was observed for WST-8. In conclusion, EZMTT is a novel tetrazolium salt which provides improved features that are suitable for dehydrogenases and real-time cell-based high-throughput screening (HTS).  相似文献   
928.
p72 is the member of the DEAD-box RNA helicase family, which can unwind double-stranded RNA and is efficient for microRNA (miRNA, miR) processing. However, its specific role in glioma has not been elucidated. First, the expression of p72 in glioma cell lines and tissues was explored using Western blot. To explore the role of p72 on glioma progression, adenovirus inhibiting p72 was transfected into A172 and T98G cells. Cell autophagy was determined using GFPLC3 dots, and cell apoptosis was determined using flow cytometry. The effect of Beclin1 was explored using GFP-LC3 dots, flow cytometry, and colony formation. The possible miRNAs that target the 3′-untranslated region (3′-UTR) of Beclin1 were predicted using TargetScan. Dual luciferase reporter assay was applied to determine whether these miRNAs bind to the 3′-UTR of Beclin1. The expression of p72 was significantly increased in glioma cell lines and tissues. Autophagy-related protein Beclin1 was found to be significantly enhanced when p72 was inhibited. The accumulation of GFP-LC3 dots was significant in cells transfected with ad-sh-p72 compared with ad-con. Colony formation capacity and cell apoptosis were also found to be significantly decreased with p72 inhibition. Furthermore, upregulation of Beclin1 contributes to A172 cell autophagy, invasion, and apoptosis. Overexpression of p72 induces increased miR-34-5p and miR-5195-3p expression in A172 and T98G cells. Beclin1 was the target gene of miR-34-5p and miR-5195-3p. In conclusion, we found for the first time that overexpression of p72 decreased Beclin1 expression partially by increasing miR-34-5p and miR-5195-3p expression in A172 and T98G cells.  相似文献   
929.
To reveal the role of climate oscillations of the Quaternary in forming the contemporary plant diversity in the temperate Sino‐Japanese Floristic Region of mainland China, we assess the phylogeographical patterns of four Sagittaria species in the region using sequence data from plastid DNA non‐coding regions (psbA‐trnH, the rpl16 intron and trnC‐ycf6) and the internal transcribed spacers of nuclear ribosomal DNA (nrITS). Based on both datasets, the divergence time among the four studied species was estimated to fall in the Late Tertiary (plastid DNA: 7.1–13.7 Mya; ITS: 11.1–16.1 Mya). The ancestral distribution analyses revealed that regions with a great diversity in topography, climate and ecological conditions, e.g. the Hengduan Mountains, Central China and East China, were the areas where the endemics originated. Mismatch distribution analyses revealed that each species had experienced a range expansion in response to Quaternary climatic oscillations. Our findings contradict the hypothesis of Quaternary origins of the endemic Sagittaria spp.; we support the view that modern species in the Northern Hemisphere originated mostly during the Tertiary. Range expansion may have profoundly modified the current distribution ranges of Sagittaria species in the Sino‐Japanese Floristic Region. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 6–20.  相似文献   
930.
Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae. Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.Cotton (Gossypium spp.) is one of the most economically important crops worldwide and a number of pathogens affect the growth and development of cotton plants. The soil-borne pathogen Verticillium dahliae (V. dahliae) causes the destructive vascular disease Verticillium wilt, which results in devastating reductions in plant mass, lint yield, and fiber quality (Bolek et al., 2005; Cai et al., 2009). To date, Verticillium wilt has not been effectively controlled in the most common cultivated cotton species, upland cotton (Gossypium hirsutum), and cultivars with stably inherited resistance to this disease are currently unavailable (Aguado et al., 2008; Jiang et al., 2009; Zhang et al., 2012a). Unlike upland cotton, sea-island cotton (Gossypium barbadense), which is only cultivated on a small scale, possesses Verticillium wilt resistance. Exploring the molecular mechanisms involved in the defense responses against V. dahliae invasion in G. barbadense can provide useful information for generating wilt-resistant G. hirsutum species through molecular breeding.During the past decades, progress has been made in studying the defense responses against V. dahliae infection in cotton. Global analyses have demonstrated that several signaling pathways, including those mediated by salicylic acid, ethylene, jasmonic acid, and brassinosteroids, activate distinct processes involved in V. dahliae defense (Bari and Jones, 2009; Grant and Jones, 2009; Gao et al., 2013a). Accumulating evidence indicates that many V. dahliae-responsive genes, such as GbWARKY1, GhSSN, GbERF, GhMLP28, GhNDR1, GhMKK2, and GhBAK1 (Qin et al., 2004; Gao et al., 2011, 2013b; Li et al., 2014a; Sun et al., 2014; Yang et al., 2015), play crucial roles in defense against Verticillium wilt. In addition, the biosynthesis of terpenoids, lignin, and gossypol also makes important contributions to V. dahliae resistance in cotton (Tan et al., 2000; Luo et al., 2001; Xu et al., 2011; Gao et al., 2013a). Together, these studies have greatly improved our understanding of the complex innate defense systems against V. dahliae infection in cotton.The initial interaction between plants and pathogens takes place in the apoplast, the compartment of the plant cell outside the cell membrane, including the cell wall and intercellular space (Dietz, 1997). In response to pathogen colonization, the attacked plant cells undergo significant cellular and molecular changes, such as reinforcement of the cell wall and secretion of antimicrobial molecules into the apoplastic space (Bednarek et al., 2010). Thus, the apoplast serves as the first line of defense against microbe invasion, and apoplast immunity can be considered an important component of the plant immune response to pathogens.Upon recognition of pathogen infection, rapid production of reactive oxygen species [the reactive oxygen species (ROS) burst] occurs in the apoplast (Lamb and Dixon, 1997; Torres et al., 2006; Torres, 2010). This ROS burst is regarded as a core component of the early plant immune response (Daudi et al., 2012; Doehlemann and Hemetsberger, 2013). During defense responses, apoplastic ROS can diffuse into the cytoplasm and serve as signals, interacting with other signaling processes such as phosphorylation cascades, calcium signaling, and hormone-mediated pathways (Kovtun et al., 2000; Mou et al., 2003). Apoplastic ROS can also directly strengthen the host cell walls by oxidative cross linking of glycoproteins (Bradley et al., 1992; Lamb and Dixon, 1997) or the precursors of lignin and suberin polymers (Hückelhoven, 2007). Moreover, apoplastic ROS can directly affect pathogens by degrading nucleic acids and peptides from microbes or causing lipid peroxidation and membrane damage in the microbe (Mehdy, 1994; Lamb and Dixon, 1997; Apel and Hirt, 2004; Montillet et al., 2005).ROS levels in the apoplast increase rapidly in response to a variety of pathogens, but subsequently return to basal levels. The rapid production and dissipation of apoplastic ROS indicate that this process is finely regulated. Two classes of enzymes, NADPH oxidases and class III peroxidases, account for the rapid ROS burst in the apoplast (Bolwell et al., 1995; O’Brien et al., 2012). NADPH oxidases are directly phosphorylated by the receptor-like kinase BIK1 to enhance ROS generation (Li et al., 2014b). Also, due to the toxicity of high levels of ROS, plants have evolved enzymatic and nonenzymatic mechanisms to eliminate ROS, thereby preventing or reducing oxidative damage (Rahal et al., 2014; Torres et al., 2006). However, the molecular system responsible for the regulation of apoplastic ROS homeostasis during the immune response is not well understood.In this study, we performed a comparative analysis of the apoplastic proteomes in control roots compared with V. dahliae-inoculated roots of Gossypium barbadense (wilt-resistant sea-island cotton) using the two-dimensional differential gel electrophoresis (2D-DIGE) technique. Among the differentially expressed apoplastic proteins, ROS-related proteins were found to be major components, including a thioredoxin, GbNRX1, which functions as an ROS scavenger in response to V. dahliae infection. Knock-down of GbNRX1 expression in cotton by virus-induced gene silencing (VIGS) resulted in reduced resistance to V. dahliae. Our results demonstrate that maintaining apoplastic ROS homeostasis is a crucial component of the apoplastic immune response and that GbNRX1 is an important regulator of this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号